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ABSTRACT
Searchable encryption (SE) allows a client to outsource a
dataset to an untrusted server while enabling the server to
answer keyword queries in a private manner. SE can be
used as a building block to support more expressive private
queries such as range/point and boolean queries, while pro-
viding formal security guarantees. To scale SE to big data
using external memory, new schemes with small locality have
been proposed, where locality is defined as the number of
non-continuous reads that the server makes for each query.
Previous space-efficient SE schemes achieve optimal locality
by increasing the read efficiency—the number of additional
memory locations (false positives) that the server reads per
result item. This can hurt practical performance.

In this work, we design, formally prove secure, and eval-
uate the first SE scheme with tunable locality and linear
space. Our first scheme has optimal locality and outper-
forms existing approaches (that have a slightly different leak-
age profile) by up to 2.5 orders of magnitude in terms of read
efficiency, for all practical database sizes. Another version
of our construction with the same leakage as previous works
can be tuned to have bounded locality, optimal read effi-
ciency and up to 60× more efficient end-to-end search time.
We demonstrate that our schemes work fast in in-memory as
well, leading to search time savings of up to 1 order of mag-
nitude when compared to the most practical in-memory SE
schemes. Finally, our construction can be tuned to achieve
trade-offs between space, read efficiency, locality, parallelism
and communication overhead.

1. INTRODUCTION
Searchable Encryption (SE) enables a data owner to out-

source a document collection to a server in a private manner,
so that the latter can still answer keyword search queries.
In a typical SE scheme, the data owner prepares an en-
crypted index which is sent to the server. To perform a
keyword search given a keyword w, a token t(w) is sent by
the data owner to the server that allows him to retrieve
pointers to those encrypted documents containing the key-
word w, while leaking some information, e.g., the access
patterns (encrypted documents that satisfy the query) and
the search patterns (whether two encrypted queries are the

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

SIGMOD’17, May 14–19, 2017, Chicago, IL, USA.
c© 2017 ACM. ISBN 978-1-4503-2138-9. . . 15.00

DOI: http://dx.doi.org/10.1145/3035918.3064057

same). An alternative is to use very expensive approaches
such as oblivious RAM [17, 25, 29] and fully-homomorphic
encryption [14, 15]. However, SE schemes have proven to
be very practical at the expense of well-defined leakage.
SE was primarily used for private keyword search but can
also be used for database search, e.g., point queries. Re-
cent works [7, 12, 13] used SE for range search and more
expressive queries which are primarily used in databases.
In particular, Demertzis et al. [12] reduced the problem of
range search to multi-keyword search using any SE scheme
as a black box illustrating the importance of SE in private
databases; any advances in SE directly impacts those works.

In contrast to the above cryptographic solutions with rig-
orous security guarantees, several schemes and entire en-
crypted database systems have been proposed (mainly in
database venues) achieving the desired performance at the
cost of more leakage. CryptDB [26] and Monomi [31] utilized
deterministic and order preserving encryption1 in order to
support point/range queries and joins. The aforementioned
works achieve very practical performance but it was recently
shown that they are susceptible to various attacks [24], for
example the leaked statistical and order information allowed
recovering the actual patient records in plaintext.

Prior SE Schemes. Since the first work on SE was pro-
posed in 2000 [27], most follow-up works considered scenar-
ios where the encrypted index could fit in memory. How-
ever, for very large indexes and databases that must be
stored on disk (e.g., see the CW-MC-OXT-4 dataset from
the recent work of Cash et al. [6] whose encrypted index
had size around 904 GB), these in-memory schemes cannot
scale since random access is expensive. In these scenarios,
the practical performance of SE schemes depends on the lo-
cality, namely the number of non-continuous locations that
the server accesses for each query. Most SE schemes have
poor locality (see the first five rows of Table 1), accessing
one random location per result item—and this random al-
location of results in memory is necessary for achieving the
desired security.

The work of Cash et al. [6] experimentally showed that in-
memory SE cannot scale to large datasets, and therefore pro-
posed new SE schemes with good locality guarantees. While
trying to reduce2 locality, it was observed that a number of
additional entries per query must be read (usually referred

1Deterministic encryption leaks the distribution of the input
data. Order preserving encryption leaks the distribution of
the input data and their order.
2Cash and Tessaro [8] and Asharov et al. [4] define locality
as the number of non-continuous reads that the server makes
per result item. Larger locality implies more non-continuous
reads. Throughout this paper we follow this notation and
by reducing locality we mean improving locality, therefore
O(1) locality means optimal locality.



Scheme Locality Read Efficiency Server Storage

Kamara et al. [19] Θ(w) O(1) Θ(N +m)
Curtmola et al. [11], Liesdonk et al. [32] Θ(w) O(1) Θ(N ·m)
Kamara et al. [18] O(w logN) O(logN) Θ(N ·m)
Cash et al. [6] and [7] Θ(w) O(1) Θ(N)
Stefanov et al. [28] O(w log3 N) O(log3 N) Θ(N)
Chase et al. [9] O(1) O(1) Θ(N ·m)
Cash et al. [8] O(logN) O(1) Θ(N · logN)
Asharov et al. [4] (Scheme 1) O(1) O(1) Θ(N · logN)
Asharov et al. [4] (Scheme 2) O(1) Θ(logN log logN) Θ(N)
Asharov et al. [4] (Scheme 3) O(1) Θ(log logN log log logN)∗ Θ(N)

Our scheme with optimal locality O(1) O(N1/(s+1)) Θ(N · s)
Our scheme with O(L) locality O(L) O(N1/s/L) Θ(N · s)
Lower bound [8] O(1) O(1) ω(N)

Table 1: Comparison of the most representative SE schemes. We denote with N the number of keyword-document pairs,
with m the number of unique keywords and with w the size of the result of a keyword search query. Our schemes can
be parameterized in terms of locality L. Our most practical scheme is achieved by setting L = 1, yielding read efficiency
O(N1/(s+1)) and space equal to Θ(N · s). Note that for L = N1/s (which gives constant read efficiency), we can prove our
scheme is secure using as leakage only the size of the access pattern (as used in previous works). ∗Assuming no keyword list

has size more than N1−1/ log logN .

to as false positives). The ratio of the total number of en-
tries read over the size of the initial query result was defined
as read efficiency. Soon after, Cash and Tessaro [8] pre-
sented, along with a lower bound, a scheme that requires
Θ(N logN) space, O(logN) locality and optimal O(1) read
efficiency, whereN is the number of document-keyword pairs
in the document collection. Finally, Asharov et al. [4] re-
cently presented three schemes: One with Θ(N logN) space
and optimal read efficiency and optimal locality (Scheme 1
in Table 1) and two other schemes with linear space, opti-
mal locality and very small (asymptotically) read efficiency
(Scheme 2 and Scheme 3 in Table 1).3

Among the above schemes, Scheme 1 is the fastest in prac-
tice (no false positives and no random access) and would be
the scheme of choice if one could afford to store Θ(N logN)
space. However, this can be quite an overkill. For example,
for the the CW-MC-OXT-4 dataset [6] whose encrypted in-
dex has size around 904 GB and 2,732,311,945 entries, this
would mean storing around 28.3 TB. In this paper, we focus
on SE schemes with good locality guarantees that occupy
linear space. Such schemes are, for example, Schemes 2 and
3. While these works achieve close to optimal read efficiency
from a theoretical point of view, they introduce a significant
practical overhead, as we detail in the following.

Our Contributions. In this paper we propose a novel SE
scheme for private keyword and database search with tun-
able locality. We formally prove the security of our scheme
and we also present a thorough description of the implemen-
tation and evaluation of our scheme in external and internal
memory settings. For a parameter s that controls the space
(the space is s ·N), our most efficient scheme has O(1) local-

ity and O(N1/(s+1)) read efficiency—see Line 11 of Table 1.
In particular:

1. Our scheme achieves up to 577× less false positives for
all practical database sizes when compared to Scheme

3From now on, we will be referring to the schemes by
Asharov et al. [4] simply as Scheme 1, Scheme 2 and Scheme
3.

2 in a large database (approximately 1 TB) (see Fig-
ure 10(b)). This translates into big improvements in
practical performance in an external memory setting.
We stress here that our scheme’s leakage profile is
slightly different (not necessarily worse) than Scheme 2
(see discussion on leakage in Section 3.4) and its worst-
case asymptotic read efficiency is worse than Scheme
2. There are two reasons we are better in practice
despite worse asymptotics: First, due to hidden con-
stants in the polylogarithmic complexity of Scheme 2.
Second, and most importantly, our asymptotic com-
plexity is worst-case (meaning that there are some
queries that we answer optimally or close to optimally)
while Scheme’s 2 complexities are tight (meaning that
there are no queries that are answered optimally)4.

2. Our scheme is designed to work fast in memory as well,
where the bottleneck is not random memory access
but computation. In particular it achieves up to 12×
speed-up compared to the state-of-the-art in-memory
SE scheme by Cash et al. [6]5 (that has optimal read
efficiency but bad locality) and up to 347× speed-up
compared to Scheme 2 in an in-memory setting (see
Figure 7(a)). The speed-ups in the in-memory setting
are due to the fact that our scheme substantially re-
duces the number of PRF (Pseudo Random Function)
evaluations required to retrieve the result. In particu-
lar, PRFs are the main building block for an SE; they
are used for the generation of the encrypted index.
Previous SE schemes answer a keyword search query

4We do not directly compare to Scheme 3 since it is based
on an unrealistic assumption, i.e., that no keyword list has
size greater than N1−1/ log logN (if we also have this assump-
tion, our scheme still compares favorably, see Appendix for
a complete analysis).
5We only compare with the most basic scheme of Cash et
al. [6], since the other ones that have good locality have been
proposed for external memory being sub-optimal compared
with the schemes of Asharov et al. [4] and introduce more
leakage.



by evaluating at least as many PRFs as the result size,
in order to find the memory locations that the server
has to read. Instead, our SE scheme requires only a
constant number of PRF evaluations, irrespective of
the size of the result and the read efficiency.

3. Our scheme can be also tuned to achieve locality L
and improved read efficiency O(N1/s/L)—see Line 12
of Table 1. This is quite important in a parallel setting
with L processing units. Using this tuning, each pro-
cessor can have optimal locality and O(N1/s/L) read
efficiency. We highlight this trade-off is non-trivial.
The trivial bound would be O((N/L)1/s), achieved
when one partitions the data set into L pieces of N/L
entries and subsequently applies the original optimal
locality scheme. In the experimental evaluation, we
show that this allows to have always less false positives
than Scheme 2 even for N = 247 − 1 (an unencrypted
database with size 1.12 petabytes — see Figure 11(b)).

Interestingly enough, for the case where L = N1/s

(that gives optimal read efficiency), our scheme has
exactly the same leakage profile as previous work.

2. BACKGROUND

2.1 Prior Work on Other SE Schemes
We discussed prior work on SE schemes with optimal lo-

cality guarantees in the introduction section. Here we refer
to other related SE work. Song et al. [27] presented the first
SE scheme, secure under Chosen Plaintext Attacks (CPA).
Later, Goh [16] explained why CPA security is not adequate
for the case of SE schemes. Curtmola et al. [11] introduced
the state-of-the-art security definitions for SE both in non-
adaptive settings, i.e., maintaining security only if all the
queries are submitted at once in one batch) and in adap-
tive settings, i.e., maintaining security even if the queries
are progressively submitted, and provided constructions that
satisfy their definitions (we use the latter definition in this
paper). Following the work of Curtmola et al. [11] several
efficient schemes were proposed [19, 28, 18, 7, 23, 5], some
of which support updates [19, 28, 18, 23, 5], are paralleliz-
able [18] and support more complex queries [7]. The above
works constitute the first generation of SE schemes that pro-
vide linear space solutions with optimal read efficiency, but
achieve poor locality and can only be used for data that fit
in memory. Other such SE schemes include [9, 32, 21] which
have significant space overhead, rendering them impractical
for both in-memory and external memory models.

2.2 Preliminaries
Negligible Function. A function ν: N → N is negligible
in λ, negl(λ), if for every positive polynomial p(·) and all
sufficiently large λ, ν(λ) < 1/p(λ).

Randomized Encryption (RND). We refer to a random-
ized symmetric encryption scheme with three polynomial-
time algorithms as RND, i.e., RND = (Gen, Enc, Dec), such
that Gen takes as input a security parameter λ and returns
a secret key k, Enc takes as an input a secret key and a mes-
sage and outputs a ciphertext and Dec takes as an input the
secret key k and a ciphertext and outputs the message that
was encrypted. An RND scheme is secure against chosen-
plaintext attacks (CPA) if the ciphertexts do not reveal any

information about the plaintext even if the adversary can
observe the encryption of the messages of his choice. For a
formal definition see [20].

Pseudo Random Functions (PRFs). A PRF function
F : {0, 1}∗×{0, 1}∗ → {0, 1}∗ is a two-input function, where
the first input is called the key and the second is the input x.
F can be distinguished from a truly random function only
with negligible probability in λ, denoted as negl(λ). For a
formal definition see [20].

Collision-Resistant Hash Function. H is a collision-
resistant hash function if two inputs a and b have the same
H(a) = H(b) with negligible probability. For a formal defi-
nition see [20].

SE Definition. Let D be a collection of documents. Each
document D ∈ D is assigned with a unique document identi-
fier and contains a set of keywords from a dictionary ∆. We
use the notation D(w) to denote the document identifiers
that contain a keyword w. SE schemes focus on building an
encrypted index I on the document identifiers. For simplic-
ity, we only consider the document identifiers instead of the
actual documents since these are encrypted independently
and stored in the server separately from the encrypted index
I; whenever the client retrieves a specific identifier during a
search, he can send it to the server in an extra round and the
server can send the corresponding document back. Finally,
N is the data collection size, i.e., N =

∑
∀w∈∆ |D(w)|. An

SE protocol considers two parties, a client and a server and
consists of the following algorithms [11]:

• k ← KeyGen(1λ): is a probabilistic algorithm run by
the client. It receives as input a security parameter λ
and outputs a secret key k.

• I ← Setup(k,D): is a probabilistic algorithm run by
the client prior to sending any data to the server. It
receives as input a secret key k and the data collection
D, and outputs an encrypted index I. Index I is sent
to the server.

• t← Token(k,w): is a deterministic algorithm executed
by the client when issuing a query. It receives as input
a secret key k and a keyword w, and outputs a token
t.

• X ← Search(t, I): is a deterministic algorithm run by
the server. It receives as input a token t corresponding
to the query keyword and the encrypted index I, and
outputs a set X of document identifiers. In the case
of database search the set X contains the encrypted
result.

Security Definition and Leakage Functions. Figure 1
presents the ideal and real games for (semi-honest) adaptive
adversaries, as introduced in [10]. These games are used
to formally prove the security of an SE scheme. They are
partitioned into two worlds, the real and the ideal one. The
real world depicts a real SE scheme, where the adversary has
access to the Setup and Token algorithms. More specifically,
the real scheme creates a secret key to which the adversary
does not have access. The adversary selects a document col-
lection which is given as an input to the Setup algorithm.



Real(λ) IdealL1,L2(λ)

k ← KeyGen(1λ)
(D, stA)← A(1λ) (D, stA)← A(1λ)
I ←Setup(k,D) (I, stS)←SimSetup(L1(D))
for 1 ≤ i ≤ q for 1 ≤ i ≤ q
(wi, stA)← A(stA, I, t1, . . . , ti−1) (wi, stA)← A(stA, I, t1, . . . , ti−1)
ti ←Token(k,wi) (ti, stS)← SimToken(stS ,L2(D, wi))

let t = (t1, . . . , tq) let t = (t1, . . . , tq)
output v = (I, t) and stA output v = (I, t) and stA

Figure 1: SE ideal-real security experiments.

Furthermore, stA denotes a state maintained by the adver-
sary. The adversary observes the output of the Setup algo-
rithm which is the encrypted index. Then, the adversary
is able to select a polynomial number of queries, and for
each of these queries he observes the corresponding token.
Having this token allows him to retrieve the encrypted re-
sult. In the ideal world, the adversary interacts with the
simulator. The simulator S does not have access to the real
document collection or the real queries. Instead, the simula-
tor only has access to predetermined leakage functions and
by using these leakage functions and his state he attempts
to “fake” the algorithms Setup and Token. We consider only
the strongest types of adversaries, i.e., adaptive adversaries
that can select their own new queries based on previous ones.
The adversary tries to distinguish in which world he has ac-
cess to. We prove that an adversary can distinguish the
output of the real world from that of the ideal world only
with negligible probability. This means that an adversary
does not learn anything else, but the predefined leakage. We
refer the reader to [10, 12] for a more detailed explanation
of the security game.

As is common in SE definitions, we use two leakage func-
tions, L1 and L2. L1 is associated with what is leaked from
the index alone, which means what is leaked prior to the
query execution), whereas L2 represents the leakage pro-
duced by the queries (during the query execution). In par-
ticular

L1(D) = N

is the size pattern, where N =
∑
∀w∈∆ |D(w)|. Namely L1

leaks just the size of the index. Also

L2(D, w) = (id(w),D(w))

is the access pattern leaking the identifiers of documents
matching the query for keyword w, as well as a deterministic
function of the keyword w, id(w). The history of L2 leakage
also defines the search pattern leakage, which leaks whether
two queries are the same.

As mentioned before, we can use an SE scheme for database
search by corresponding the notion of document identifiers
to tuple identifiers or encrypted tuples (encrypted using RND),
and the notion of keywords to searchable attributes. In the
case of database search, the L1 leakage is identical and cor-
responds to the number of tuples. The L2 leakage in the
database search differs from the previous case because it
only contains the size of the encrypted results or similarly
the size of the access pattern as shown below. We refer to
this leakage as LDB2

LDB2 (D, w) = (id(w), |D(w)|)

We consider the two cases separately because when perform-
ing database search the leakage is considered less signifi-
cant than the keyword search problem. In particular, SE
in database search achieves leakage that is very close to the
optimal one achieved by ORAMs. Their difference is that
SE additionally leaks the search pattern. Finally, database
search leaks less information compared to keyword search
due to structural difference. In keyword search, one docu-
ment identifier can be included in multiple keywords, while
in database search one tuple-id or an encrypted tuple can
have exactly one searchable value per attribute. For exam-
ple, a patient cannot have more than one date of birth.

Definition 1. Let (KeyGen, Setup,Token, Search) be an
SE scheme as defined before, let λ ∈ N be the security param-
eter and consider experiments Real(λ) and IdealL1,L2(λ)
presented in Figure 1, where L1, L2 are leakage functions de-
fined above. We say that the SE scheme is (L1,L2)-secure if
for all polynomial-size adversaries A there exists polynomial-
time simulators SimSetup and SimToken, such that for all
polynomial-time algorithms Dist:

|Pr[Dist(v, stA) = 1 : (v, stA)← Real(λ)]−
Pr[Dist(v, stA) = 1 : (v, stA)← IdealL1,L2(λ)]|
≤ negl(λ) ,

where the probabilities are taken over the coins of KeyGen
and Setup.

The above security definition applies only to static SE
schemes. The extension of static SE schemes to a dynamic
setting requires guaranteeing a property called forward pri-
vacy [33]; the server does not get to learn that a newly in-
serted keyword,id pair satisfies a query issued in the past.

Locality, Read Efficiency and the Lower Bound. Cash
and Tessaro [8] present formal definitions of locality and read
efficiency in searchable encryption. Intuitively, locality is
the number of non-continuous accesses made by the server
to retrieve the query result. Moreover, read efficiency is the
ratio of the information read when retrieving the query re-
sult over the result itself. Finally, Cash et al. proved in [6]
that in any secure SE scheme both optimal locality and op-
timal read efficiency while using O(N) storage cannot be
achieved. Briefly, the intuition behind the lower bound is
that if a scheme has optimal locality and linear space and
the server has observed the location of some queries, then
he can look at the non-accessed locations to infer statistical
information about the input dataset.



3. OUR NEW SE CONSTRUCTIONS
We now describe the algorithms of our new scheme. Our

main scheme in Figures 4 and 5 and has optimal locality,
O(N1/s) read efficiency and space O(s ·N) by setting L = 1.
In the optimizations that we describe later in Section 3.3 we
will show how to further reduce the above to O(N1/(s+1)).
We also show in Section 3.2 how to adjust our scheme to
have localityO(L) and read efficiencyO(N1/s/L). From sec-
tion 3.1 to section 3.2, we focus only on the keyword search
scenario; database search was described in section 2.2 and
will be presented again in the optimization 3.3 and security
analysis 3.4 sections.

3.1 Scheme with Optimal Locality
Our core scheme is inspired by the scheme of Asharov et

al. [4], but is different is many ways. Asharov et al. proposed
a scheme with optimal locality, optimal read efficiency and
O(N logN) space. This scheme roughly works as follows: It
uses ` = logN+1 arrays A0, A1, . . . , A`

6 of size N . Array Ai
consists of N/2i chunks and stores all keyword lists of size
2i at randomly-chosen chunks (note it is assumed here that
all keyword list sizes are powers of two—we do not have
this assumption). This ensures that the size of data read
from each array Ai is always the same, which is important
for security. Therefore, to retrieve the results for a certain
keyword w, one needs to read the right bucket at level i
that contains the list. This bucket number is stored in an
encrypted form in a separate dictionary and can be retrieved
using the token for the keyword w. It is easy to show that
such an approach reaches the aforementioned bounds.

Our main idea is to reduce the space of the above scheme
by storing only s evenly distributed levels, where s is a small
constant in practice (e.g., in our experiments we set s = 2
or 4). In particular we pick p = d`/se and we store only the
levels L = {`, `− p, `− 2p, . . . , `− (s− 1) · p} .This however
creates many issues. For example, if level i is not stored,
then the queries of size 2i can no longer be answered. To
avoid this problem we choose to store at level i ∈ L keyword
lists D(w) such that

2j < |D(w)| ≤ 2i ,

where j ∈ L is the smaller level following i in L. (We stress
that if i is the smallest level we ignore the lower bound in
the above relation.) To store a keyword list whose size falls
in the above range, we pick a random bucket at level i that
has enough space (we never split a keyword list across two
buckets). While this looks like an easy fix, it creates further
problems as we detail in the following paragraph.

In particular, we can no longer guarantee that all key-
word lists with sizes (2j , 2i] can fit in a single bucket at level
i, which is important for maintaining our optimal locality.
This is because, depending on the order that we store the
keyword lists, there might be one that will have to reside
in different buckets, ruining our optimal locality. For exam-
ple, assume two consecutive levels that we store are levels 1
and 3 and the total number of elements we have is N = 16.
There are three keywords in our data set w1, w2 and w3,
with |D(w1)| = |D(w2)| = 4, and |D(w3)| = 8. All these
lists will be stored at level 3, which has two buckets of size
8. If we choose to store w1 and w2 in different buckets, then

6The actual scheme uses hash tables instead of arrays but
we use arrays here for clarity.

w3 will have to be divided across the two buckets, increas-
ing its locality from 1 to 2. This also affects the security
of the scheme since there exist inputs that could trigger the
aforementioned overflow and others that could not.

We address this problem by slightly increasing the space
of each level i ∈ L from N to 2N + 2i+1—see Lemma 1. In
particular, we are doubling the size of each bucket in each
level and adding one more bucket per level. This allows us to
guarantee that regardless of the order of the input keyword
lists there will always be enough space to store an entire
keyword list in one bucket.

Lemma 1. Assume level i can store 2N+2i+1 entries and
let W be the set of keywords with list sizes ≤ 2i. Regardless
of the order in which we store keywords w ∈ W at level
i, there is always going to be enough space within a single
bucket (of size 2i+1) for all keywords w ∈ W.

Proof. Let level i be split in at most Λ + 1 buckets, so

2N + 2i+1 = Λ · 2i+1 + y , (1)

where 0 ≤ y < 2i+1 is the size of the last bucket. We prove
our claim by contradiction. Suppose there exists a keyword
w ∈ W whose list has size κ ≤ 2i and for which there is not
enough space in any bucket of level i. This means that all Λ
buckets in level i have been filled with at least 2i+1 − κ+ 1
items and the last bucket has been filled with at least y−κ+1
items. In that case, if we count the number of items that
have been considered so far we have

# items considered ≥ Λ · (2i+1 − κ+ 1) + y − κ+ 1

=
2N + 2i+1 − y

2i+1
· (2i+1 − κ+ 1) + y − κ+ 1

≥ 2N + 2i+1 − y
2i+1

· (2i + 1) + y − 2i + 1 (since κ ≤ 2i)

= N +
N

2i
+ 2 + y − y

2
− y

2i+1

≥ N (since i ≥ 0) .

Therefore we show that the total number of items considered
so far is at least N , which is a contradiction.

The arrangement of the mappings in our scheme is shown
in Figure 2. In particular, we present two cases, where in
both N = 64: (1) We keep all the levels by setting s=7 and
store all the keyword-lists of size |D(w)| in level dlog |D(w)|e.
(2) We set s = 2 and follow our algorithm which keeps only
levels 3 and 6. In the latter case, all keyword-lists of size less
than or equal to 8 are mapped to level 3 and the remaining
ones to level 6.

Complexities. Clearly the above approach answers queries
with optimal locality. Also, the read efficiency isO(2logN/s) =

O(N1/s). To see that, note that the maximum penalty in
terms of false positives is paid by keywords lists D(w) with
size 2j +1 which are answered by the buckets of size 2i (this
is in case i > ` − (s − 1) · p, i.e., i is not the last level).
Therefore, by the definition of read efficiency

R ≤ 2i

2j + 1
< 2i−j ≤ 2ddlogNe/se = O(2logN/s) = O(N1/s) .

For i = `−(s−1)·p we have R ≤ 2i but since `−(s−1)·p ≤ p
we have the same bound. The space of this approach is
O(s ·N).



2 ·N elements + 2i+1

level 0

level 1

level 2

level 3

level 4

level 5

level 6

|D(w)| = 1

1 < |D(w)| ≤ 2

2 < |D(w)| ≤ 4

4 < |D(w)| ≤ 8

8 < |D(w)| ≤ 16

16 < |D(w)| ≤ 32

32 < |D(w)| ≤ 64

BucketA5[3]BucketA5[2]BucketA5[1]

|A5[2]| = |A5[3]| = 26

Figure 2: Example for N = 64 and s = 7. When s = 2, our scheme with optimal locality stores only levels 6 and 3, mapping
all the queries of levels 0, 1, 2 to level 3 and all the queries of levels 4, 5 to level 6. The worst case read efficiency is N1/2 = 8
occurring when we map a query of size 1 to level 3.

3.2 Tuning the Locality of Our Scheme
Our scheme above achieves optimal locality. However,

there are scenarios that we might want to increase slightly
the locality to gain in read efficiency—this could be a par-
allel processing setting. One naive way to increase locality
from 1 to L so that to gain in read efficiency is to par-
tition our original data set into N/L data sets and apply
our optimal locality scheme separately on each one of the
smaller datasets. By using our previously described scheme,
this would yield O((N/L)1/s) read efficiency (actually, this
approach of data partitioning can work for every locality-
optimal scheme). We propose here a new scheme with read

efficiency O(N1/s/L) and locality L. This is much better in
practice, and asymptotically better for any L = ω(1). The
idea is as follows:

In our previous scheme, we chose to store at level i lists
that have sizes in (2j , 2i], where i and j are adjacent levels
in L with i > j. To achieve locality L, we can choose to
store at level i keyword lists D(w) such that

L · 2j < D(w) ≤ L · 2i .

(Again, if i is the smallest level we ignore the lower bound
in the above relation.) Among those lists, the ones with size
≤ 2i are stored as in the previous scheme; The ones with
size > 2i are split into multiple chunks of size 2i and one
chunk of size less than 2i. Then these chunks are stored as
before. Note that because we again end up storing chunks
of size ≤ 2i at level i, Lemma 1 can be recast and still holds,
guaranteeing that even with this new, modified algorithm,
there will always be a bucket with enough space to store the
relevant chunks.

Complexities. The locality for keyword lists of size greater
than 2i is at most L, while the read efficiency for those lists
is optimal. For keyword lists of size less or equal to 2i, the
maximum penalty is achieved for the list of size L · 2j + 1,
in which case the read efficiency is

R ≤ 2i

L · 2j + 1
<

2i−j

L
= O

(
N1/s

L

)
.

Again, the above holds for i > ` − (s − 1) · p. As opposed
to before, for i = `− (s− 1) · p the above, improved bound

does not hold (in particular it is O(N1/s)), since keyword
lists with size 1 must be answered by level i. To avoid that,
we also keep level 0, which answers keyword lists with size

≤ L. See Line 1 of Algorithm Setup. Only the size of the
array A0 can be N , instead of 2N + 1.

The space remains O(s ·N). Note our initial scheme with
optimal locality is a special case of the above scheme for
L = 1. The detailed algorithms of our schemes are shown in
Figures 4 and 5. Figure 3 illustrates an example for s = 2
and L = 2. Note that algorithm Setup takes as input the
parameters L (locality) and s (number of levels kept). We
observe that our scheme keeps levels 0,3,6. The red arrows
illustrate that these queries will be answered by the level
above (including false positives), while the blue arrows in-
troduce our new policy. In our new policy, given a stored
level i, the logL levels above it will be stored and answered
by the level i. For example, a keyword list of size 16 will be
divided into two chunks of size 23 and each of these chunks
will be stored in level 3.

Technical Details of Our Construction. In Figures 4
and 5 we illustrate our construction in more detail. In par-
ticular, the KeyGen algorithm takes as input the security
parameter and computes the secret keys that are used in
the randomized encryption scheme and the pseudorandom
functions. The Setup algorithm takes as input the document
collection, the secret keys, and the parameters s and L and
in lines 1-6 it initializes the encrypted dictionary (it uses a
hash table for the implementation of the encrypted dictio-
nary) and the arrays Ai (each array Ai contains buckets of
size 2i+1 — a collection of consecutive cells where each cell
stores an encrypted (w, id) pair). In lines 7-15 the Setup
algorithm places the keyword lists in the arrays Ai, while
storing in the dictionary the bucket in which a keyword list
or a chunk of the keyword list is stored. Finally, in lines
17-20 the entries of a bucket are randomly permuted and
the arrays Ai are encrypted; each entry is encrypted using
RND encryption and the produced key is a function of the
keyword. This approach is only used in the keyword search
scenario where we expect from the server to directly output
the document identifiers. However, in the database search
scenario, we encrypt each entry using RND encryption with-
out choosing a key as a function of the keyword, since the
server does not perform any decryption but outputs only the
encrypted result to the client. In Figure 5, the Token algo-
rithm produces the tokens which are given as inputs to the
Search algorithm in order to locate the entry of the dictio-
nary which corresponds to the queried keyword. The same
algorithm partially decrypts L entries of the dictionary to



2 ·N elements + 2i+1

level 0

level 1

level 2

level 3

level 4

level 5

level 6

1 ≤ |D(w)| ≤ 2

2 < |D(w)| ≤ 16

16 < |D(w)| ≤ 64

Figure 3: Example for N = 64, s = 2 and L = 2. Our scheme stores levels 0, 3, 6. The red arrows depict the queries whose
answers contain false positives but with optimal locality, while the blue arrows show queries with optimal read efficiency and
constant locality.

further detect the correct buckets and the correct array Ai
and filters out the false positives; the server attempts to
decrypt all the entries inside a bucket but only the entries
containing the queried keyword will have the last λ-bits to
be 0. The same procedure could be used in the database
search scenario to obtain the tuple identifiers of the answer.
However, in the next section we provide a more efficient op-
timization to address this task since the tuples can be stored
directly in the encrypted arrays Ai.

Scheme with Read Efficiency O(R). It is easy to see
that the above scheme can be tuned to achieve read effi-
ciency O(R) and worst-case locality O(N1/s/R) by setting

L = N1/s/R. We also note that for L = N1/s our scheme
has optimal read efficiency O(1) and has exactly the same
leakage profile with prior SE schemes (such as Scheme 2). In
the latter case, if we change the arrays Ai into hash tables,
then the encrypted dictionary is not required.

3.3 Optimizations of Our Scheme
We now describe various optimizations that can be applied

to our scheme. The first two are used in our implementation.

Optimization 1 - Decryption of the Result at the
Client. In the current scheme, the decryption of the re-
sult (namely the identifiers of the documents containing the
searched keyword) take place at the server side (see Line 6
of Algorithm Search). In particular the server performs 2i+1

decryption attempts, where 2i is the size of the bucket from
which we retrieve the answer. We can reduce the decryption
cost to be proportional to the size of the result, by assigning
the decryption to the client. This optimization can be used
in keyword search by increasing the number of interactions;
one round is required for the server to send the encrypted
document-ids to the client and the client to decrypt them
in order to request from the server in the second round to
return the actual documents. In database search we only
need one round of interaction, since using RND allows us to
directly encrypt and store the tuples (instead of tuple-ids)
in the encrypted index. It is highlighted that in this case the
server does not perform any partial decryption of the tuples,
i.e., the server identifies a super set of the result and returns
this to the client (this super set of the result may contain
false positives, which the client is responsible to filter out).
This optimization requires the following changes:

• First, do not permute the entries in the bucket, as
is done in Line 19 of Algorithm Setup. This will not
violate our security since we will not allow any decryp-
tions to take place at the server side.

• Second, instead of encrypting each entry in the bucket
with a secret key derived from the respective keyword
(see Line 20 of Algorithm Setup), encrypt all entries
across all buckets with a single secret key that is stored
at the client and is never revealed to the server.

• Finally, during the search, the server just sends the
whole bucket encrypted to the client. Since the en-
tries within the bucket are not randomly permuted,
the entries corresponding to each keyword are consec-
utive. If the client knows the start and end point of
each keyword, then he can decrypt only the part of the
bucket that contains the actual result while skipping
the remaining cells.

We note here that in order for the client to get the start and
end values, our scheme can use an extra encrypted dictio-
nary (like the one used to store offset and level i). To avoid
increasing the space though, one could store only one dictio-
nary with the start and end information, retrieve those and
then derive (from start and end) the bucket offset and the
level and request those from the server. The above observa-
tions can significantly accelerate the search procedure. Note
that the above improvements are not applicable in Scheme
2 since in their case each bucket contains pieces of the result
in arbitrary positions.

Optimization 2 - Storing One Level Less. Recall that
in our scheme with constant locality we answer queries with
size bigger than 2`−p+1 by retrieving one bucket from level `
(which both have size 2`+1). Since 2`+1 ≥ N , the aforemen-
tioned queries require reading information that is at least
equal to the size of the dataset. We propose not storing
level `, but only the levels ` − p, ` − 2p, . . . , ` − (s − 1)p,
reducing the number of stored levels from s to s− 1. To ac-
commodate the queries with size > 2`−p+1, we just have the
server return the whole level `−p+1. This does not asymp-
totically increase the read efficiency for level `. In summary,
with this new approach, we can store space O(s · N) for a

read efficiency of O(N
1

s+1 ), and constant read locality. This
optimization applies to the locality L scheme as well.



k← KeyGen(1λ)

1: (k1, k2, k3)←$ {0, 1}λ.
2: RND = (Enc,Dec) is CPA-secure encryption scheme.
3: F : {0, 1}∗ × {0, 1}λ → {0, 1}∗ is a PRF and H : {0, 1}∗ → {0, 1}∗ is a collision resistant hash function.
4: return (k1, k2, k3).

I ←Setup(k,D)

1: Parse k as (k1, k2, k3). Let s and L be publicly-known parameters.
2: Let N = |{D(w)}w∈W| and ` = dlogNe. Set p = d`/se. Let L = {`, `−p, . . . , `−(s−1) ·p}. If L > 1 set L = L∪{0}.
3: Initialize a hash table HT that can store up to N elements.
4: for each evenly distributed level i ∈ L do
5: Initialize an array Ai of size 2N + 2i+1.
6: Divide Ai in Λi buckets of size 2i+1 and one bucket of size yi < 2i+1.
7: Let Ai[1], Ai[2], . . . , Ai[Λi + 1]} be the set of those buckets.

8: for each keyword w ∈W in a random order do
9: Find adjacent j and i in L such that L ·2j < |D(w)| ≤ L ·2i (if i is the smallest level, we ignore the lower bound).

10: Split D(w) into a set Cw of chunks containing qw chunks of size 2i and one chunk of size rw < 2i.
11: count = 0.
12: for each chunk c ∈ Cw do
13: count = count+ 1.
14: Let A be the set of buckets in Ai that have enough space for chunk c (say those are Ai[j1], Ai[j2], . . . , Ai[jf ]).
15: Pick one bucket a ∈ A (say Ai[x]) uniformly at random and store c in a at the first available position.
16: HT.add(H(Fk1(w)||count), [i||x]⊕ H(Fk2(w)||count)).
17: Add random (key, value) pairs to HT so that the total number of elements it stores is N .
18: for each stored array Ai (i.e., i ∈ L) do
19: for each bucket b ∈ Ai do
20: Randomly permute all entries (w, id) within b.
21: Replace each entry (w, id) of b with RND.Enckey(id||0λ) where key = Fk3(w).

22: Let A = {Ai : i ∈ L}.
23: return (HT,A).

Figure 4: KeyGen and Setup algorithms for our scheme with locality L, read efficiency O(N1/s/L) and space Θ(s ·N).

Optimization 3 - More Efficient Level Selection by
Increasing Leakage. The basic algorithm for constant lo-
cality stores s out of ` = dlogNe levels which are evenly
distributed. This means that selecting a level is a function
of N . For instance, let us assume that N = 232 and s = 4.
In this case our basic algorithm preserves levels 32, 24, 16,
and 8. Yet in the case where the maximum keyword list
has size 4, then we observe that all queries are answered in
level 8 and the remaining levels have no use. Thus, given
statistical information about the stored dataset we can con-
struct a better level selection algorithm. Note that an SE
scheme using this optimization should increase L1 by this
additional statistical information. An example of such in-
formation that can be used is the minimum and maximum
word lists. For real datasets this optimization can radically
improve the performance of our proposed schemes, but in
the experimental evaluation we do not consider it to present
fair comparisons to related work.

Optimization 4 - Fault Tolerance. Existing fault-tolerance
file system architectures are using the notion of replication
to address failures. A typical replication factor for those sys-
tems is at least 3, meaning that the initial dataset with size
N will be expanded three times. For instance, the default
replication factor of Apache Hadoop File System (HDFS) is
set to be 3 [30]. We can change our scheme to replicate all
keyword/id pairs in all s levels (Lemma 1 will still hold!).

In this way, for s = 3, our scheme can get fault-tolerance for
free (since we are storing s · 2N space), while other schemes
would have to explicitly triple the space they are using.

3.4 Security Analysis and Leakage Profile
Our main construction for general values of L leaks the

following information (when searching fo keyword w):

1. L1(D), as defined in Section 2.2. This is leaked by all
previous schemes.

2. A deterministic function of the queried keyword id(w)
(search pattern). This is leaked by all previous schemes.

3. The bucket identifier bucket(w) where w is read from.
In particular, bucket(w) contains information about
the portion of the memory read to retrieve the result
of a specific keyword (the level i and the offset of the
bucket), which depends on the order in which the key-
words were considered in the Setup algorithm. We be-
lieve this leakage is not meaningful since the order is
decided at random. This information is not leaked by
previous schemes.

We emphasize here also that our scheme, due to the first
optimization in Section 3.3 and as opposed to all previous
schemes, does not explicitly leak the exact size of the access
pattern (it just leaks an upper bound on the size of the access



t← Token(k, w)

1: Parse k as (k1, k2, k3).
2: tag ← F (k1, w), vtag← F (k2, w), etag← F (k3, w).
3: return (tag,vtag,etag).

X ← Search(t, I)

1: Parse t as (tag,vtag,etag) and I as (HT,A).
2: for count = 1 to L do
3: evalue← HT.get(H(tag||count)).
4: if evalue is not NULL then
5: [i, offset] ← evalue ⊕ H(vtag||count).
6: for all entries e in bucket Ai[offset] do
7: if RND.Decetag(e) outputs id||0λ then
8: Add id to the result set X .
9: return result X .

Figure 5: Token and Search algorithms for our scheme with
locality L, read efficiency O(N1/s/L) and space Θ(s ·N).

pattern through the size of the bucket read). To summarize,
we can now formally write our leakage functions as

L1(D) = N and Lnew2 (D, w) = (id(w), buckets(w)).

Leakage Functions for the Case L = N1/s. Unlike the
general case, our scheme with L = N1/s has exactly the
same leakage profile as previous schemes (e.g., Scheme 2):
it just leaks L1(D) and L2(D, w) (or LDB2 (D, w) in the case
of the database scenario), as mentioned in Section 2.2.

Theorem 1. Given F is a pseudorandom function, H is a
collision-resistant hash function and RND is a CPA-secure
encryption scheme, the SE scheme of Figures 4 and 5 is
(L1,Lnew2 )-secure according to Definition 2.2 and in the ran-
dom oracle model.

Additionally, for the case when the locality L = N1/s, the
scheme is (L1,L2)-secure according to Definition 2.2 and in
the random oracle model.

In Appendix B, we provide the proof of Theorem 1.

4. DYNAMIC SE (DSE)
In this section, we present an extension to our current

work that allows updates. Allowing updates is a twofold
challenge because it requires the following: a) enable efficient
inserts and deletes; b) avoid leaking extra information while
achieving forward privacy, i.e. it does not reveal that a new
update satisfies a previous query. The recent works of [28,
23, 5] do not seem to meet our efficiency requirements since
Miers et al. [23] proposed a DSE scheme partially based on
ORAMs, Bost [5] requires O(m logN) available client stor-
age, where m denotes the size of the domain, and Stefanov
et al. [28] use ideas mainly inspired by ORAMs and expen-
sive cryptographic tools, such as oblivious sorting.

Proposed Solution. Our DSE scheme is based on a solu-
tion proposed by Demertzis et al. [12] for Range SE schemes.
It is also used by commercial databases, such as Vertica [22]
(organizes the updates in log-merge trees). This commonly
used technique is preferable for the following reasons: i) it
can use our very efficient static SE scheme as a “black box”,
ii) it enables easy leakage formulations, iii) it captures for-
ward privacy. The leakage of this approach is essentially the

entire history of the L1,L2 leakages of every index that was
once ”active” at the server. The main idea is that we or-
ganize n sequential updates to a collection of at most logn
independent encrypted indexes. In particular, for each new
tuple, the data owner initializes a new SE scheme by cre-
ating a new SE index that contains only the specific tuple.
The single-tuple index is subsequently uploaded to the un-
trusted server. Whenever two indexes of the same size t are
detected there are downloaded by the data owner, decrypted
and merged to form a new SE index of size 2t, again with a
fresh secret key. The new index is then used to replace the
two indexes of size t. Clearly, a merge may have a cascading
effect, i.e. subsequent merges. In this case, all merges are
executed at the same time to avoid redundant work, that is
constructing and uploading intermediate indexes. Deletions
are simulated by inserting cancellation tuples. For further
details, we refer the reader to [12]. The amortized update
cost is O(logn) but it can also be de-amortized by using
ideas from [3]. The space is linear in the size of the input
and the number of updates. The locality of this approach is
O(L · logn) and the read efficiency is O(N1/s/L).

5. EXPERIMENTS
In this section we experimentally evaluate the performance

of our proposed scheme. We compare our scheme only with
linear-space approaches. If one can afford N logN space, the
best scheme (both asymptotically and in practice) is Scheme
1 of Asharov et al. [4]. As such, we compare our work with
the static construction of Cash et al. [6] and Scheme 2 of
Asharov et al. [4]—see Table 1. We refer to the former as
PiBas and to the latter as OneChoiceAlloc. We compare our
scheme only with the basic construction of Cash et al. [6] (i.e.
PiBas) because the more optimized proposed schemes (with
good locality) are sub-optimal compared with the schemes
of Asharov and introduce new leakages (in L1 leakage). Nev-
ertheless, our scheme can be tuned with the use of the third
optimization presented in Section 3.3 to achieve the same
performance as the most optimized scheme of Cash et al. [6].
Moreover, we do not compare our scheme with Scheme 3 of
Asharov et al. [4] because it assumes that no keyword list

has size more than N1−1/ log logN as shown is Table 1. In-
stead, we explain in the Appendix why this assumption is
not realistic and we experimentally show the superiority of
our scheme compared to Scheme 3 of Asharov et al. [4], by
adopting the same assumption.

We organize the experimental section as follows. Sec-
tion 5.1 presents the experimental setting and the techni-
cal details of our implementation. Section 5.2 focuses on
the comparison of our work with PiBas and OneChoiceAl-
loc in an in-memory setting, while Section 5.3 compares our
scheme with PiBas and OneChoiceAlloc in an external mem-
ory setting where optimal read efficiency is guaranteed in our
scheme and PiBas and optimal locality in OneChoiceAlloc.
Then, we compare our scheme with OneChoiceAlloc, where
optimal locality is guaranteed in both schemes, and we focus
on the comparison of the number of false positives in both
approaches. Finally, in section 5.3 we provide experiments
in parallel scenarios where we can tune locality to further
reduce the number of false positives while assuring optimal
locality per parallel processing unit (in particular, for over-
all locality L, we can have L parallel processing units with
constant locality per unit).
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Figure 6: Index costs

5.1 Setup
We carried out the implementation of our scheme, as well

as the implementation of PiBas and OneChoiceAlloc in Java
and conducted our experiments on a 64-bit machine with an
Intel Xeon E5-2676v3 and 64 GB RAM. We utilized the
JavaX.crypto library and the bouncy castle library [1] for
the cryptographic operations. In particular, for the PRF
and randomized symmetric encryption implementations we
used HMAC-SHA-256 and AES128-CBC respectively for en-
cryption. For our in-memory experiments we used single-
threaded implementations, since a parallel implementation
would favor our scheme compared to the schemes of our
competitors. The experiments were conducted on a real
dataset [2] consisting of 6, 123, 276 records of reported in-
cidents of crime. We consider the query attribute to be the
location description which contains 173 distinct keywords
(this is the x-axis in Figures 7(a),8). Among these keywords
the one with minimum frequency contains 1 record, while the
one with maximum frequency comprises 1, 631, 721 records.
The specific dataset is used for the in-memory setting com-
parison. Our external memory experiments use the above
dataset for the comparison with optimal read efficiency and
locality O(N1/s). For the external memory comparison with
optimal locality we created a synthetic dataset. Note that in
both, our locality-optimal scheme and OneChoiceAlloc the
only factor that affects the number of false positives is the
number of records. Thus, we create two synthetic datasets
where the first contains N = 237 − 1 records and one key-
word list for each possible size which is a power of 2, such
that |D(wi| = 2i. The second synthetic dataset has the same
data structure, only now it comprises N = 247 − 1 records.

Implementation Details. We implement our locality-
optimal algorithm using the first two optimizations described
in Section 3.3. In particular, the client sends a token to
the server and the server uses this token to locate and re-
turn the chunk that contains the answer of the query. This
means that it is the responsibility of the client to decrypt
and filter out the resulting false positives. We use optimiza-
tion 1 to reduce the client’s workload. In addition, we use
optimization 2 to further reduce the required server space.
We implement our read efficiency optimal algorithm without
encrypted dictionary using for Ai hash tables.

The implementation of PiBas is straight-forward and was
carried out as proposed in the work of Cash et al. [6]. We
implemented the work of Asharov using a dictionary as was
proposed for the general case. In particular, the dictionary
contains the size of the result for each keyword. Thus, the
client sends a token to the server and the server using the
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Figure 7: Search costs

dictionary locates the first bucket in which the first result is
placed and also the number of total buckets that it has to
return to the client. The client is responsible for decrypting
the buckets in order to filter out the false positives.

Both our scheme and OneChoiceAlloc can be implemented
to return the exact result without any false positives as
shown in Figures 4 and 5, where the server herself can filter
out the false positives. However, doing this decreases the
performance of both schemes. Only for the experiment in
Figure 9(b), we implement OneChoiceAlloc to filter out the
false positives at the server, since our read efficiency opti-
mal scheme and PiBas do not contain false positives (we
also provide an experiment for OneChoiceAlloc where the
client performs the filtering — see Figure 9(a)). Note that
carrying out the filtering on the server can be an efficient
solution when the application has strict bandwidth limita-
tions, because then the false positives are removed before
transferring the data over the network.

5.2 In-memory Comparison
Index Costs. In the first set of experiments we evaluate
the required index size and construction time of our scheme
for different dataset sizes N . The results are shown in Fig-
ures 6(a) and 6(b) respectively. The construction time in-
cludes the I/O cost of transferring the dataset from the disk
to the main memory, while the index size represents only
the size of the encrypted index, since the size of the en-
crypted documents (or tuples) is the same for all schemes.
Moreover, we partition the initial dataset into 12 sets of
500K tuples each, chosen uniformly at random from the en-
tire dataset. Then, we begin with the first partition and
consider the other partitions in each step in order to rep-
resent the construction time and index size as the size of
the input gradually increases. For the initialization of our
scheme we selected s = 2. According to our analysis and
using the first optimization implies storing 2 levels and hav-
ing read efficiency O(N1/3). In this way we have space re-
quirements comparable to OneChoiceAlloc whose space is
approximately 3N , while our case requires approximately
4N space; in both cases an encrypted dictionary of size N is
required. Recall that due to Lemma 1, our scheme requires
to store in each preserved level i an array of size 2N and
one extra chunk of size 2i+1. These space requirements are
included in our figures. As expected, our schemes require
slightly more storage and time for constructing the index
compared to OneChoiceAlloc. We observe that PiBas re-
quires less storage than both our scheme and OneChoiceAl-
loc, but the construction time performance is worse because
of the need for more PRF evaluation per keyword/identifier
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pair. In particular, our schemes require index size from 85
to 1015 MB and construction time from 25 to 283 sec, while
PiBas requires index size from 31 to 366 MB and construc-
tion time from 28 to 317 sec and OneChoiceAlloc requires
index size from 69 to 824 MB and construction time from
21 to 230 sec. In addition to these outcomes though, it is
worth mentioning that in our scheme the Setup algorithm
is highly parallelizable, and therefore the cost of the specific
algorithm can be distributed to different machines. In the
case of PiBas and OneChoiceAlloc it is not straight-forward
how we could parallelize the construction of the index.

Search Cost. Figure 7(a) illustrates the total time required
by the server and client to perform every possible query ex-
cluding the communication cost. All schemes require trans-
ferring the result size through the network. However, our
scheme and OneChoiceAlloc need to transfer more data than
PiBas for each query. Our approach transfers on average
35× more information compared with PiBas and in the
worst case this number becomes equal to 126×, while One-
ChoiceAlloc always transfers 324× times more data com-
pared with PiBas. More specifically, Figure 7(b) shows the
number of records returned by our approach, OneChoiceAl-
loc approach and PiBas approach, which transfers the exact
result without false positives. For visualization purposes, we
sort the queries based on their result size and we query each
of them. Our schemes reached up to 12× speed-up com-
pared to PiBas and achieved 347× speed-up in comparison
with OneChoiceAlloc. This experiment confirms our non-
trivial claim that optimal locality can be successfully used
to achieve more efficient SE schemes even for in-memory ar-
chitectures or fast external storage devices, i.e. solid state
drives. Note that our scheme yields the above speed-up by
reducing the workload of the server and client in the two fol-
lowing manners: i) the server is only responsible for return-
ing the required chunks without evaluating a PRF for each
result item; ii) the chunks contain the results of each query
together, thus allowing her to decrypt only the requested
result. These two features offered by our construction can,
neither be integrated with PiBas, nor with OneChoiceAlloc.

The purpose of this experiment is to illustrate the amount
of less work performed by the client and the server in our
approach, and for this reason we exclude the communica-
tion cost. Nevertheless, we also conducted the experiments
while taking into account the communication cost and ob-
served that having on average 1 Gbps transfer rate in Fig-
ure 8(a) yielded results similar with the ones presented in
Figure 7(a) when we compared our scheme with PiBas and
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Figure 9: External memory comparison for the real dataset

OneChoiceAlloc. Additionally, for 200 Mbps transfer rate or
more our scheme becomes the most efficient one for all possi-
ble queries as shown in Figure 8(b), while when the transfer
rate is less than 200 Mbps some queries may become slower
than PiBas. In comparison with the OneChoiceAlloc scheme
our scheme is always more efficient regardless of the trans-
fer rate, because our scheme transfers less false positives.
For applications with limited communication bandwidth we
suggest using the original protocol, where the server filters
out the false positives herself , or the scheme with local-
ity L = N1/s. The latter scheme described in section 3.2
can be tuned to always be more efficient than PiBas. By
tuning read efficiency to be optimal, less PRF evaluations
are performed in our scheme compared with PiBas. Addi-
tionally, in the next section, we will show that this scheme
is always more efficient than OneChoiceAlloc especially for
queries with results size > 27 tuples.

5.3 External Memory Comparison
We have already mentioned that any scheme lacking lo-

cality cannot be used for big data applications (due to the
cost of accessing data on the disk at random locations). In
this section, we first compare our optimal read efficiency
scheme (with no-optimal locality L = N1/s), with PiBas
which has worst-case locality and OneChoiceAlloc which has
optimal locality in external memory scenarios, where ran-
dom accesses become the dominant factor. This compari-
son provides a very interesting outcome. Despite the fact
that PiBas has worst-case locality and OneChoiceAlloc has
optimal locality, both have similar performance, while our
scheme achieves up to 60x faster search time compared to
OneChoiceAlloc. Our scheme requires 5N space (N for level
0 and 4N for 2 additional levels — an encrypted dictionary
is not required), while OneChoiceAlloc requires 4N space
(including the encrypted dictionary). Then, we compare
our optimal locality scheme with OneChoiceAlloc. In Sec-
tion 5.2, we experimentally showed the superiority of our
scheme over OneChoiceAlloc. We now measure only the
number of false positives produced by each approach, since
it is the only factor that differs between the two schemes
and impacts their performance in practice.

Figure 9(a) depicts the end-to-end search time for the real
dataset. PiBas and our scheme return to the client the exact
answer, while in this experiment OneChoiceAlloc returns the
answer with false positives. We observe that OneChoiceAl-
loc is faster than PiBas, while our scheme is up to 60x faster
than OneChoiceAlloc and for the queries with size ≤ 27 tu-
ples it has the same performance as PiBas and at most 2.8x
speed-down compared to OneChoiceAlloc. This is due to
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Figure 10: External memory comparison (N = 237 − 1)

the block size whose size is 4K and can contain at most 27

encrypted keyword,id pairs. If the result size is smaller than
27 we still have to retrieve a whole block from the disk. Fur-
thermore, if level 7 is the next stored level after 0 , then a
query with size 26 requires from the server to read 26 blocks
and for each of these blocks to perform a random access. In
this case, for all query results with less than 27 tuples our
scheme works identically to the scheme of PiBas.

In this experiment, we implemented OneChoiceAlloc to
conduct the filtering of the false positives on the server
side (as was originally proposed in the paper [4]). Now,
PiBas,OneChoiceAlloc and our scheme return to the client
the result without false positives, so the communication cost
and client work become the same for all schemes. Figure 9(b)
compares the server search time for the threes schemes. We
surprisingly observe that when the server filters the false pos-
itives, then for the majority of the queries PiBas is slightly
better than OneChoiceAlloc. OneChoiceAlloc is designed to
have optimal locality, while PiBas has worst-case locality.
The reason, why in Figure 9(a) and in Figure 9(b) One-
ChoiceAlloc and PiBas have similar performance is because
for each piece of the result PiBas pays a PRF evaluation (ap-
proximately 43 µsec) and a random access (approximately 10
msec), while OneChoiceAlloc requires 3 logN log logN PRF
evaluations (approximately 13msec per result item) and no
random accesses. OneChoiceAlloc has optimal locality, but
requires significantly more cryptographic operations and the
benefit gained from locality is nullified by the cost of the
additional cryptographic operations. In Figure 9(b), we ob-
serve that our scheme requires up to 4 orders of magnitude
less search time on the server than OneChoiceAlloc.

Below, our scheme has again optimal locality. Figure 10(a)
depicts the worst-case read efficiency compared with One-
ChoiceAlloc for the first synthetic dataset of size N = 237−1
and for different numbers of levels s in our scheme. For s ≥ 4
our scheme always outperforms OneChoiceAlloc, and there-
fore we consider the interesting cases to be s = 2 and s = 4.

In Figure 10(b) we compare the number of false positives
of our approach and OneChoiceAlloc, for all possible queries
for s = 2, 4. For s = 2 (which requires the same space with
OneChoiceAlloc), our approach outperforms OneChoiceAl-
loc for almost all possible queries, reaching maximum speed-
up approximately 577×. This is because our scheme does
not penalize queries with the worst-case bound.

We conduct the same experiments on a dataset of size
close to 1 petabyte and the resulting outcomes are illus-
trated in Figures 11(a)and 11(b) (see Our Scheme for L = 1
and the parallel OneChoiceAlloc for L = 32). Figure 11(b)
shows that only for a small portion of all possible queries
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Figure 11: External memory comparison using parallelism
(N = 247 − 1)

OneChoiceAlloc has less false positives than our scheme.In
the worst case, our scheme reaches 86× speed-down com-
pared to OneChoiceAlloc, but for the biggest portion we
achieve significantly higher speed-ups up to 760×.

Since it is impractical to handle a dataset of size close to 1
petabyte without exploiting parallelism, we tune the locality
L of our scheme to be equal to the number of parallel pro-
cessing units (the locality per processor remains O(1)). In
this case we always achieve a smaller number of false pos-
itives for all queries. For comparison reasons we created
a parallel implementation of the OneChoiceAlloc scheme
based on the (naive) idea proposed in Section 3.2. We could
not further improve the parallel approach of OneChoiceAl-
loc. Figures 11(a) and 11(b) report the results of the same
experiments, but now using 1, 8, 16, 32 parallel processing
units for our scheme, and always 32 parallel processing units
for the OneChoiceAlloc scheme. Recall that when L > 1 we
also have level 0, but only for level 0 we store an array of size
N instead of 2N + 2. The vast improvement is achieved be-
cause for s = 3 our complexity is O(N1/3/L) (as explained
in Section 3.2) while the complexity of OneChoiceAlloc is
Θ(log(N/L) log log(N/L)). Thus, the impact of L in our
scheme is much larger.

6. CONCLUSIONS
In this paper we revisit the problem of Searchable En-

cryption (SE) with small locality, and we propose the first
SE scheme with tunable locality. Our scheme allows tuning
the space, read efficiency, locality, parallelism and commu-
nication overhead in order to achieve optimal performance
for any arbitrary database architecture. The experimental
evaluations show that our schemes outperform the state-
of-the-art in-memory and external memory SE. Our work
points out that another aspect for consideration in this prob-
lem is the number of cryptographic operations required to
obtain the result. We show that the scheme of Asharov et
al. [4] with optimal locality scales similarly to a scheme with
worst-case locality (for external memory evaluation) since it
requires significantly more cryptographic operations.
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Figure 12: External memory comparison (N = 247 − 1)

In the experimental evaluation section 5 we purposely did
not include the comparison of our work with the Scheme 3
proposed by Asharov et al. in [4] (TwoChoiceAlloc), due to
their assumption of not considering word lists of size more
than N1−1/ log logN . This assumption cannot be taken into
consideration for real world datasets. For instance, let us ex-
amine the real dataset of crime records that was used in our
experiments that contains 21 attributes. Then, for 12 at-
tributes out of the total of 21, their assumption is violated.
Therefore, it becomes infeasible to use the TwoChoiceAl-
loc scheme on these attributes. Moreover, even though the
assumption holds for the 9 remaining attributes note that
these contain only unique values or have very small cardinal-
ity, i.e. the following attributes: id, case number, date and
time, X coordinate, Y coordinate, longitude and latitude.
For these attributes TwoChoiceAlloc can be used, but even
then our scheme yield a smaller number of false positives.
More specifically, we applied to our scheme the assumption



of N1−1/ log logN by computing the level that has chunks
bigger than the answer to a query of size N1−1/ log logN .
Since it is impossible to consider such sizes (or bigger), we
evenly select the appropriate levels out of the remaining ex-
cluding those that have chunks with size bigger than the
answer of the query. This can be illustrated in an exam-
ple where N = 247 − 1. Then, the assumption that we do
not have a query result of size bigger than N1−1/ log logN

means that the possible query sizes range from 1 to 239.
Therefore, our algorithm will select evenly distributed lev-
els starting from level 1 up to level 36 excluding all levels
higher than 36. Figures 12(a) and 12(b) compare the two
schemes showing that for the same amount of space which
is equivalent to setting our redundancy factor s = 2 since
TwoChoiceAlloc requires 4 ·N space, our scheme is always
better than TwoChoiceAlloc. In addition, TwoChoiceAlloc
assumes that the size of each word list is a power of 2 and N
is also assumed to be a power of 2. Hence, in the worst case
the TwoChoiceAlloc scheme requires padding the dataset,
thus yielding a final size that reaches 8∗N . In this case and
in order for both schemes to use the same space we tune our
redundancy factor to be equal to 8 so we also show the case
of our scheme having redundancy factor s = 8.

Appendix B: Proof of Theorem 1
For simplicity, we provide the proof of Theorem 1 for con-
stant L using the first optimization described in section 3.3
and for L = N1/s using LDB2 leakage (database scenario).

The simulator algorithms:

• SimSetup(L1(D))

• SimToken(Lnew2 (D, w))

• SimToken(LDB2 (D, w))

are shown in Figure 13 and Figure 14, respectively.
For the first part of the proof (which is the same for both

cases of Theorem 1) we must show that no PPT algorithm
Dist can distinguish, with more than negligible probabil-
ity, between the index Ireal = (HTreal,Areal) output by
Setup(k,D) and the index Iideal = (HTideal,Aideal) output
by SimSetup(L1(D)). This is because

• Both Areal and Aideal are sets of s arrays

A`, A`−p, A`−2p . . . A`−(s−1)·p ,

where in both cases Ai has 2N + 2i entries (A0 is in-
cluded for L > 1). Areal contains the encryption of
values using a CPA-secure scheme, while Aideal con-
tains random values of the same format.

• Similarly, Dist cannot distinguish HTreal from HTideal,
since both have N entries, HTreal encrypts entries by
“xoring” with the output of a pseudorandom function
and HTideal contains random values.

For the second part of the proof and according to Defini-
tion 1, we need to prove that there does not exist a PPT
algorithm Dist that can distinguish between the outputs of
Token(k, w) and the outputs of SimToken(stS ,Lnew2 (D, w))
and SimToken(stS ,LDB2 (D, w)). This is because:

• Both the Token and SimToken produce the same tokens
for the same repeated keywords. SimToken uses the
search pattern leakage Prev included in stS .

Case for locality L = 1.
• For a given keyword, SimToken and Token output the

same [i, offset] pair, included in the Lnew2 (D, w) leak-
age and therefore the distributions are trivially indis-
tinguishable. Note that for SimToken to output a spe-
cific [i, offset] pair we program the random oracle H
accordingly—see Line 9 in Figure 13.

Case for locality L = N1/s.

• For a given keyword, SimToken and Token do not nec-
essarily output the same [i, offset] pairs. However, the
[i, offset] pairs output by both algorithms are distributed
identically. In particular the real [i, offset] pairs output
by Token are distibuted uniformly at random (due to
such placement by Setup), while SimToken chooses uni-
formly at random [i, offset] pairs among the pairs that
she did not choose before—see Line 11 in Figure 14.
Again, for SimToken to output a specific [i, offset] pair
dictated by the simulator we program the random ora-
cle H accordingly—see Line 12 in Figure 14.



(I, stS)← SimSetup(L1(D))

1: Let N ← L1(D),` = logN , p = d`/se. Let L = {`, `− p, . . . , `− (s− 1) · p}. If L > 1 set L = L ∪ {0}.
2: k← KeyGen(1λ).
3: Initialize a hash table HT of size N random entries and mark them as “unrevealed”.
4: for each evenly distributed level i ∈ L do
5: Initialize an array Ai of size 2N + 2i+i with random elements.
6: Divide Ai in Λi buckets of size 2i+1 and one bucket of size yi < 2i+1.
7: Let Ai[1], Ai[2], . . . , Ai[Λi + 1]} be the set of those buckets and mark all the buckets as “unrevealed”.

8: Let Prev an empty hash table.
9: Set I to be the set A = {Ai : i ∈ L} and encrypted dictionary HT .

10: Set stS to include I, Prev and k.
11: return (I, stS).

(tw, stS)← SimToken(stS ,Lnew2 (D, w))

1: Parse stS as A = {Ai : i ∈ L}, HT , Prev and k = k1, k2.
2: Let (id(w), buckets(w))← L2(D, w).
3: if Prev.get(id(w)) 6= null then
4: return (Prev.get(id(w)), stS).
5: else
6: Set tag = F (k1, id(w)), vtag = F (k2, id(w)) and count = 1.
7: for each (i, offset) ∈ buckets(w) do
8: Pick uniformly at random an “unrevealed” entry e = (key, value) from hash table HT .
9: Program the random oracle H such that H(tag||count) = key and H(vtag||count) = value⊕ [i, offset].

10: Mark e as “revealed” and set count = count+ 1.

11: Set tw ← (tag, vtag).
12: Prev.add(id(w), tw).
13: Update stS with new values of Prev, the choices that the random oracle made.

14: return (tw, stS).

Figure 13: Simulator algorithms SimSetup and SimToken for scheme with O(L) locality and O(N1/s/L) read efficiency.

(tw, stS)← SimToken(stS ,L2(D, w))

1: Parse stS as A = {Ai : i ∈ L}, HT , Prev and k = k1, k2.
2: Let (id(w), |D(w)|)← L2(D, w).
3: if Prev.get(id(w)) 6= null then
4: return (Prev.get(id(w)), stS).
5: else
6: Find table Ai for maximum i such that 2i < |D(w)| (if |D(w)|=1 set i = 0).
7: q = d|D(w)|/2ie.
8: Set tag = F (k1, id(w)), vtag = F (k2, id(w)).
9: for count = 1 to q do

10: Pick uniformly at random an “unrevealed” entry e = (key, value) from hash table HT .
11: Pick uniformly at random an offset of an “unrevealed” bucket b at level i.
12: Program the random oracle H such that H(tag||count) = key and H(vtag||count) = value⊕ [i, offset].
13: Mark e and b as “revealed”.
14: Set tw ← (tag, vtag).
15: Prev.add(id(w), tw).
16: Update stS with new values of Prev and the choices that the random oracle made.

17: return (tw, stS).

Figure 14: Simulator SimToken for scheme with O(N1/s) locality and O(1) read efficiency.


