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ABSTRACT
We consider a data owner that outsources its dataset to an
untrusted server. The owner wishes to enable the server to
answer range queries on a single attribute, without compro-
mising the privacy of the data and the queries. There are
several schemes on “practical” private range search (mainly
in Databases venues) that attempt to strike a trade-off be-
tween efficiency and security. Nevertheless, these methods
either lack provable security guarantees, or permit unaccept-
able privacy leakages. In this paper, we take an interdisci-
plinary approach, which combines the rigor of Security for-
mulations and proofs with efficient Data Management tech-
niques. We construct a wide set of novel schemes with re-
alistic security/performance trade-offs, adopting the notion
of Searchable Symmetric Encryption (SSE) primarily pro-
posed for keyword search. We reduce range search to multi-
keyword search using range covering techniques with tree-
like indexes. We demonstrate that, given any secure SSE
scheme, the challenge boils down to (i) formulating leakages
that arise from the index structure, and (ii) minimizing false
positives incurred by some schemes under heavy data skew.
We analytically detail the superiority of our proposals over
prior work and experimentally confirm their practicality.

1. INTRODUCTION
We focus on a setting with two parties; a data owner and

a server. The owner outsources its dataset to the server, and
enforces the latter with answering range queries on a single
attribute. The server is untrusted, and the goal is to pro-
tect the privacy of the dataset and the queries. The owner
encrypts its data prior to sending them to the server. The
challenge lies in enabling the server to process the owner’s
queries directly on the encrypted data, while achieving per-
formance costs close to the non-private case. The benefits of
data outsourcing and the importance of privacy have been
stressed in numerous earlier works (e.g., [9, 31, 34, 38]).
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Prior work. Privacy-preserving range queries can be solved
with optimal security via powerful theoretical cryptographic
tools, such as Oblivious Random Access Memory (ORAM)
[17, 29] and Fully Homomorphic Encryption (FHE) [12, 13].
Nevertheless, despite their recent advances, both these tools
are prohibitively costly for large database applications [37,
35, 36]. Motivated by this, there is a long line of work on
private range search (especially in Databases venues) that
attempts to strike a more desirable balance between security
and practical efficiency [18, 19, 20, 31, 38].

All existing approaches either lack provable security guar-
antees, or permit unacceptable leakages. For instance, [18,
20, 19] employ deterministic encryption and bucketization
techniques that map tuples with the same query attribute
value to the same bucket. Deterministic encryption leaks the
distribution of the data on the query attribute. Moreover,
these schemes do not offer standard security definitions and
proofs, which makes it hard to determine any other possi-
ble leakage. Another set of works utilizes Order Preserving
Encryption (OPE), which has the property that the cipher-
texts preserve the ordering of the plaintexts [2, 3, 23, 27,
30]. As such, traditional efficient indexes can be built di-
rectly on encrypted data, and queried in the same manner
as for plaintexts. Nevertheless, OPE is also deterministic,
inheriting the distribution leakage. In addition, it inevitably
leaks the ordering of the data.

The work closest to ours is by Li et al. [26], which follows
the notion of Searchable Symmetric Encryption (SSE) [5, 6,
8, 9, 22, 34]. SSE has been studied extensively for keyword
queries. It relaxes the security of ORAM by leaking the ac-
cess patterns of each query (i.e., which data it “touches”),
as well as the search patterns (i.e., which queries are the
same). However, nothing else is leaked (e.g., data distri-
bution). The gain from allowing this leakage is efficiency,
since SSE schemes typically build on fast inverted indexes
and make use of lightweight cryptography, such as Pseudo-
random Function (PRF) and hash evaluations. SSE also
provides a rigorous framework for accurately defining leak-
age for any construction. Unfortunately, the scheme by Li
et al. [26] relies on weak, obsolete SSE definitions (explained
in detail in Section 2.1). Moreover, it unnecessarily intro-
duces false positives and does not support updates. Most
importantly, it does not define leakages that are introduced
by the tree structure utilized in query execution. As we
will show later, one of our baseline constructions is built on
similar ideas to [26], but offers substantially better security
and performance, accurately defining leakage, avoiding false
positives, and supporting updates.



Scheme Security Query Size Search Time Storage False Posit.

Li et al. [26] 0 O(logR) Ω(logn logR + r) O(n logn logm) O(r)
Quadratic 6 O(1) O(r) O(nm2) –
Constant-BRC 1 O(logR) O(R + r) O(n) –
Constant-URC 2 O(logR) O(R + r) O(n) –
Logarithmic-BRC 3 O(logR) O(logR + r) O(n logm) –
Logarithmic-URC 4 O(logR) O(logR + r) O(n logm) –
Logarithmic-SRC 6 O(1) O(n) O(n logm) O(n)
Logarithmic-SRC-i 5 O(1) O(R + r) O(n logm) O(R + r)

n: dataset size, r: result size, m: domain size, R: query range size

Table 1: Summary of our RSSE schemes and analytical comparison to our closest competitor. Our schemes
are named after the storage expansion factor and the range covering technique. A higher value in the Security
column means better security guarantees.

Our contributions. In this paper, we revisit practical
private range search, taking an interdisciplinary approach
that combines the state-of-the-art definitional framework of
SSE [9], with efficient data management methods. In partic-
ular, we reduce range search to multi-keyword search using
range covering techniques with tree-like indexes, i.e., con-
verting a range into sub-ranges, each representing an index
node and receiving a keyword label. Contrary to off-the-shelf
multi-keyword SSE schemes [6] that incur a prohibitive lin-
ear search time in the dataset size, we design efficient tech-
niques based on single-keyword SSE protocols. We also show
that we can use the (single-keyword) SSE security games to
prove the security of a Range SSE (RSSE) scheme, by care-
fully defining the extra structural leakage stemming from the
use of the tree index to convert a range into a set of key-
words. This has the important benefit that any secure SSE
scheme can be used as a black box to realize a RSSE scheme,
which means that any future advances in the active area of
SSE can be readily incorporated into a RSSE construction.

We emphasize that expressing a range with sub-ranges
mapped to index nodes gives a lot of flexibility in designing
RSSE schemes with variable efficiency and security guaran-
tees. We also point out that the choice of the range cover-
ing method affects the security guarantees and could lead to
false positives, especially under heavy data skew. To capture
the above, we devise a wide set of solutions, which revolve
around trading storage overhead and (potentially) false pos-
itives for security. Our constructions with their performance
and security characteristics are summarized in Table 1 and
discussed in detail throughout the paper. We also quantify
the costs of Li et al. [26], which is clearly subsumed by our
Logarithmic-BRC scheme.

Logarithmic-SRC-i offers the best trade-off between se-
curity and efficiency among all our solutions. It employs a
novel directed-acyclic graph (DAG) structure that resembles
a tree, and entails an extra round of communication between
the owner and the server (“i” in its name stands for interac-
tive). This index allows hiding even the order of the results,
and minimizes the false positives. It is noteworthy that two
of our schemes, namely Constant-BRC and Constant-URC,
rely on the notion of Delegatable PRFs [24] and are moti-
vated by a brief discussion included in [24]. Our contribution
lies in formalizing the solutions and proving them secure.

Finally, contrary to existing dynamic SSE solutions (DSSE)
[5, 21, 22, 34], we tackle updates in a manner closer to the
one employed in large-scale database systems. In partic-
ular, the DSSE works attempt to devise dynamic indexes

that handle updates with the minimum possible leakage. We
stress that databases like Vertica [25] perform the updates
in batches, such that (i) each batch is treated as an inde-
pendent instance of the dataset, and (ii) multiple batches
periodically get consolidated into a single dataset. This is to
amortize the average update cost, and substitute numerous
random disk accesses with a few linear scan operations. We
formulate updates in our setting by effectively using multi-
ple static RSSE instances that periodically get consolidated
and re-encrypted.

Our contributions are summarized as follows:

• We are the first to formalize private range search in
the context of state-of-the-art SSE, effectively intro-
ducing the first concrete Range Searchable Symmetric
Encryption (RSSE) framework.

• We devise numerous RSSE schemes, identifying vari-
ous trade-offs between efficiency and security.

• We tackle updates by adopting techniques from large-
scale database systems, while formalizing the leakages.

• We analytically detail the superiority of our construc-
tions over prior work and experimentally confirm their
practicality.

Our paper is self-contained, in the sense that it does not
require any particular knowledge on Security or Data Man-
agement. We provide both the rigorous definitions and the
intuition behind all the formalism.

2. BACKGROUND
Section 2.1 surveys the related work, whereas Section 2.2

includes necessary preliminary information.

2.1 Related work
General privacy-preserving queries can be solved with op-

timal security guarantees using powerful cryptographic pro-
tocols, such as Fully Homomorphic Encryption (FHE) [12,
13] and Oblivious RAM (ORAM) [17, 29]. FHE enables the
execution of any function directly on the ciphertexts, with-
out revealing anything about the result. Unfortunately, de-
spite the recent advances, FHE is still impractical due to the
prohibitive ciphertext size and computational time. ORAM
enables access to an encrypted memory space, without dis-
closing which memory location is accessed, thus hiding both
the data and the access patterns of the queries. Currently,
even the most efficient ORAM schemes [37, 35, 36] suffer



from high bandwidth overhead and client storage cost, and
require multiple rounds of communication. A wide set of
techniques attempts to mitigate the above issues, trading
security for efficiency. Below we focus mainly on those tar-
geting range queries.

One class of techniques relies on deterministic encryption
(DET) that maps two equal plaintexts to the same cipher-
text [18, 19, 20] (its counterpart being probabilistic encryp-
tion), enabling equality queries on encrypted data. These
schemes perform bucketization (accompanied by indexing) of
data by encrypting based on the query attribute, and reduce
range search to a set of equality queries that retrieve match-
ing buckets. Although these schemes are quite efficient, they
inherit the drawback of DET, which discloses the distribu-
tion of the data (since the bucketization essentially reveals
a histogram of the data on the query attribute). Moreover,
they do not offer rigorous security definitions and proofs.
Another class of methods [2, 3, 23, 27, 30] utilizes Order
Preserving Encryption (OPE). The latter has the property
that the ciphertexts preserve the order of the plaintexts.
Therefore, efficient traditional indexes can be built on the
ciphertexts, in the same manner as on plaintexts. OPE is
deterministic and, thus, inherits the data distribution leak-
age of DET. In addition, it also leaks the order of the data
and, hence, offers even weaker security than DET.

Searchable Symmetric Encryption (SSE) [5, 6, 7, 8, 9, 14,
21, 22, 33, 34, 39, 28] has been initially proposed in the
context of keyword search, having as main goals to (i) intro-
duce rigorous security definitions, and (ii) enable the design
of schemes that avoid the leakages of DET, while retain-
ing high efficiency. There is currently no off-the-shelf SSE
scheme that supports range queries. As we shall see, in
our work (as well as in [26] described below) we effectively
reduce range search into multi-keyword search. The only
SSE scheme that seems applicable to multi-keyword search
is that of Cash et al. [6] which targets Boolean queries and
can express multi-keyword search as a disjunction of key-
words. Unfortunately, disjunctions in [6] are answered in
linear time in the number of documents, which conflicts with
our performance desiderata.

The work closest to ours is the basic scheme of Li et al.
[26]1. Note that the authors also introduce another two
schemes, which however share similarities with OPE and,
hence, inherit its drawbacks explained above. In the sequel,
any reference to [26] implies the basic scheme. This scheme
assumes a binary tree over the query attribute domain, and
computes for every tuple d in the dataset D the logm dyadic
ranges covering its attribute value, where m is the domain
size. Let the dyadic ranges of item d be denoted by DR(d).
Li et al. create a binary tree as follows. The root initially
corresponds to all data items, and stores a Bloom filter [1]
over {DR(d) : d ∈ D}. The algorithm works recursively,
starting from the root and working top-down. At each node,
it randomly permutes and splits the data items in two sets,
each corresponding to one child. Then, it stores a Bloom
filter over the DR values for the data items corresponding
to each node. Eventually, each leaf contains a Bloom fil-

1
Faber et al. [11] also independently proposed schemes for range

querying, after our work was submitted for publication. Two of
their schemes are practically the same as our Logarithmic-BRC/URC,
whereas their three-range cover solution is similar to our Logarithmic-
SRC scheme (which is single-range cover). However, they did not
consider false positives under data skew, which is efficiently captured
by our most advanced method, Logarithmic-SRC-i.

ter indexing only DR(d) for a single d. A range query is
answered by splitting the range into its O(logR) minimal
dyadic ranges, where R is the range size over the domain,
and traversing the tree by checking whether the Bloom filter
in each node “contains” some minimum dyadic range.

The costs of [26] are included in Table 1. The scheme fixes
the ratio of the false positives (inherent to Bloom filters) at
each node. This results in O(n logn logm) storage cost, and
O(r) false positives, where n is the dataset size and r the re-
sult size. Moreover, the query size is O(logR), whereas the
search time is Ω(logn logR+r). Note that it is difficult (and
out of our scope) to find a tight upper bound for the actual
search time, due to the random perturbation of the items
in the tree and the false positives, but [26] points out that
this could be O(r logn). Performance aside, the most severe
drawback of [26] is its security. First, it relies on the SSE
definitions from Goh [14] which have been proven weak by [7,
9]; at a very high level, Goh [14] implies that the privacy of
the encrypted queries (trapdoors) is not protected, whereas
[9] protects both the data and the queries. Second, [26] fo-
cuses on non-adaptive adversaries; from a practical point
of view, this means that [26] is secure only in applications
that allow the users to ask all their queries once in a batch,
and then they shut down. Contrary, it is not secure against
adversaries that ask some queries first and, based on the
responses they get, then adapt their attacks and ask more
targeted queries later. This considerably limits the applica-
bility of this solution in realistic settings. Finally, [26] does
not support updates. We introduce Constant-BRC/URC
(Section 5) and Logarithmic-BRC/URC (Section 6.1) that
subsume [26] in all aspects.

There is a long line of work on creating dynamic SSE
(DSSE) schemes to handle updates [5, 21, 22, 34]. The chal-
lenge in these works is to achieve a property called forward
privacy ; the server should not learn that a newly added item
satisfies a query issued in the past. Most solutions focus on
creating a dynamic secure index. In our work, we take an al-
ternative approach that satisfies forward privacy, by utilizing
only static SSE schemes and combining them with efficient
bulk-loading techniques adopted from large-scale database
systems (such as Vertica [25]).

Range queries have also been studied in a different set-
ting where there are multiple parties contributing to the
owner’s dataset using her public key, and the owner issues
its range queries on this collective dataset with her secret
key [4, 32]. This setting is based on asymmetric cryptogra-
phy and, hence, entails considerably higher computational
costs than our schemes.

2.2 Preliminaries
We explain in turn two range covering techniques with

binary trees, the PRF and DPRF cryptographic tools, and
the required definitions we adopt from the SSE literature.

Range covering techniques. Consider a domain A. We
construct a full binary tree over its values bottom-up. Given
a range (i.e., a sequence of contiguous values) over A, a range
covering technique selects a set of nodes whose subtrees col-
lectively cover the given range entirely. We will describe
two techniques, best range cover (BRC) and uniform range
cover (URC). BRC essentially selects the minimum number
of nodes that cover exactly the range (also called minimum
dyadic intervals). For range size R, there are O(logR) such



nodes. In Figure 1, for A = {0, . . . , 7}, BRC covers range
[2, 7] with nodes N2,3 and N4,7 (shown in gray).

Consider now range [1, 6] which has the same size as [2, 7].
BRC covers [1, 6] with nodes N1, N2,3, N4,5 and N6, i.e., with
a different number of nodes at different levels. We shall see
later that this leads to extra leakage, since the number of
nodes covering a range may imply where an encrypted range
query may or may not be. Motivated by this fact, [24] intro-
duces URC in the context of DPRFs (explained below). In
particular, [24] points out that there is always a worst-case
decomposition of any range of a given size R into a certain
number of nodes at certain levels. Interestingly, this decom-
position retains the O(logR) complexity, regardless of where
this range is placed over the domain. Briefly stated, URC
starts with the set of nodes output by BRC, and keeps on
“breaking” certain nodes into their two children, until there
is at least one node for each level 0, . . . ,max, where max
is the highest level of nodes in the result. In the example
of Figure 1, for range [2, 7], URC initially invokes BRC and
retrieves N2,3 and N4,7. These nodes are at levels 1 and 2,
respectively, but there is no node at level 0. Subsequently, it
breaks N4,7 into N4,5 and N6,7, as well as N2,3 into N2 and
N3. Now [2, 7] is represented by nodes N2, N3, N4,5, N6,7

(enclosed in boxes in Figure 1), i.e., by two nodes at level 0
and two nodes at level 1. Observe that [1, 6] is also repre-
sented by the same number of nodes at respective levels.

PRFs and DPRFs. A Pseudorandom Function (PRF)
family F is a set of functions {fk : A → B | k ∈ K}, where
A,B,F ,K are indexed by a security parameter λ and such
that fk(·) is efficiently computable. The main property of a
PRF is that an adversary that does not know the secret key
k can distinguish fk ∈ F from a truly random function only
with negligible probability in λ, written as negl(λ).

A Delegatable PRF (DPRF) [24] is an enhancement of a
PRF with an extra property: the party that knows the secret
key k of fk can allow another party that does not possess k
to derive DPRF values for a subset of the domain A. The
benefit is performance: the secret holder generates and out-
sources a small set of intermediate values, which can be used
by an untrusted third party to produce an exponential num-
ber of DPRF values. Similar to a PRF, the intermediate and
final DPRF values appear to be random.

In [24] the DPRF values are computed using the semi-
nal GGM pseudorandom generator [16]. This is defined as
G : {0, 1}λ → {0, 1}2λ, i.e., on a λ-bit input x, G(x) pro-
duces two λ-bit outputs G0(x) and G1(x) that appear to
be random. Let a`−1 . . . a0 = a ∈ A be some `-bit domain
value. Its DPRF value using secret key k is computed as
fk(a`−1 . . . a0) = Ga0(. . . (Ga`−1(k))), i.e., k serves as the
seed to successive computations of G. For example, the bi-

1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

BRC

URC

Figure 1: Covering range [2, 7] with BRC and URC

nary representation of 6 is (110)2. In Figure 1, observe that
6 is reached by a path starting from the root that chooses
right, right and left. Assigning 0 to left and 1 to right,
this path traversal uniquely identifies the binary expression
of value 6. The DPRF of 6 is fk(6) = G0(G1(G1(k))). The
GGM values are practically organized into binary tree, here-
after called GGM tree.

The purpose of this particular construction is to permit
delegation. Let us focus on range [4-7], completely covered
by node N4,7 in Figure 1. Observe that, given G1(k) and
without possessing k, one can derive all DPRF values for
4-7; G1(k) is associated with node N4,7, and all values cor-
responding to its descendants can be derived by applying G
successively using G1(k) as the seed and choosing the G0

(left) or G1 (right) output based on the path.
When the input range is not covered completely with a

single node, it is decomposed into a set of multiple nodes
covering the range (following BRC or URC), and the ap-
propriate GGM values corresponding to those nodes (paired
with the node level) are provided. The receiver of these val-
ues can then easily derive all the DPRFs within the range.
The GGM values are called tokens and produced by a func-
tion T that implements BRC or URC, whereas the derivation
of the actual DPRF values (corresponding to the leaves) is
performed by a function C. Both T and C are part of the
specification of the DPRF function family.

SSE definitions. LetD be a collection of documents, where
a document can be any data item, even a tuple. Each docu-
ment d ∈ D has a unique id, which could be the actual doc-
ument id or an alias that allows easy mapping to d. Every
d is also associated with a set of keywords from a dictionary
∆. We represent by id(w) the ids of the documents that
contain w. SSE schemes focus on building an encrypted in-
dex I on the document ids. For simplicity, we concentrate
only on the ids, since the actual documents are encrypted
independently and stored at the server separately from I;
once some id is retrieved during search, the server can send
the corresponding document to the owner, who decrypts in
a final step that is orthogonal to the SSE instantiation.

An SSE protocol involves an owner and a server and con-
sists of the following algorithms:

k ← Setup(1λ): is a probabilistic algorithm run by the owner
before commencing the system. It takes as input secu-
rity parameter λ and outputs a secret key k.

I ← BuildIndex(k,D): is a probabilistic algorithm run by
the owner prior to sending its data to the server. It
takes as input the secret key k and the data collection
D, and outputs an encrypted index I built on the doc-
ument ids. Index I is sent to the server, along with
the actual encrypted documents.

t← Trpdr(k,w): is a deterministic algorithm executed by
the owner when issuing a query. It takes as input key
k and keyword w, and outputs a token t.

X ← Search(t, I): is a deterministic algorithm run by the
server to retrieve the ids of the documents containing
the query keyword. It takes as input a token t cor-
responding to the query keyword and the encrypted
index I, and outputs a set X of document ids.

In state-of-the-art SSE constructions [9, 8, 22, 21, 34, 6,
5], I is essentially an encrypted inverted index, which allows



RealSSE,A(k) IdealSSE,A,S(k)

k ← Setup(1λ)

(D, stA)← A0(1λ) (D, stA)← A0(1λ)
I ←BuildIndex(k,D) (I, stS)← S0(L1(D))
(w1, stA)← A1(stA, I) (w1, stA)← A1(stA, I)
t1 ←Trpdr(k, w1) (t1, stS)← S1(stS ,L2(D,w1))
for 2 ≤ i ≤ q for 2 ≤ i ≤ q
(wi, stA)← Ai(stA, I, t1..ti−1) (wi, stA)← Ai(stA, I, t1..ti−1)
ti ←Trpdr(k, wi) (ti, stS)← Si(stS ,L2(D,w1..wi))

let t = (t1..tq) let t = (t1..tq)
output v = (I, t) and stA output v = (I, t) and stA

Figure 2: SSE ideal-real security game

efficient retrieval of the document id list corresponding to
the query keyword. The token t constitutes auxiliary infor-
mation that allows the server to partially decrypt only the
index components that lead to the retrieval of the result ids.
However, once these index portions are decrypted, they be-
come permanently known to the server. In other words, SSE
inherently introduces certain information leakage.

An ad-hoc way of defining security would be to outline
a set of adversarial attacks, and prove that the scheme is
robust against these attacks. This is dangerous as we cannot
anticipate the types of attacks an adversary is able to launch.
A rigorous way to define security is to formulate the leakage,
and prove that the adversary learns nothing more than this
leakage. Curtmola et al. [9] introduced a framework for
achieving this, following the seminal ideal-real paradigm by
Goldreich [15]. In particular, after formulating leakage, we
define two games. The real is essentially the execution of the
actual SSE protocol. The ideal is a simulation of the real,
i.e., an attempt to “fake” the real game, knowing only the
formulated leakage. Finally, we prove that an adversary can
distinguish the output of the first from that of the second
with only negligible probability. Intuitively, this means that
the adversary indeed does not learn anything more than the
leakage, otherwise he would be able to distinguish the real
from the ideal execution with non-negligible probability.

We focus on semi-honest, adaptive adversaries. “Semi-
honest” means that the adversary is curious to infer infor-
mation during the execution of the protocol, but does not
deviate from the protocol. “Adaptive” means that the ad-
versary attempts to learn information even in between query
executions, and may adaptively select the next query based
on the previous ones. A non-adaptive adversary submits all
queries before starting to learn information. Clearly, adap-
tive adversaries are more realistic in database applications
where the queries are not presented all at once to a system.

For completeness and to facilitate presentation in Sec-
tion 3, in Figure 2 we present the SSE ideal-real games for
(semi-honest) adaptive adversaries, as introduced in [10]. In
RealSSE,A, an adversary A interacts with the actual SSE
protocol, choosing the initial document set and (adaptively)
the keyword queries. The adversary gets access only to
BuildIndex and Trpdr, since it does not know the secret key
k. stA is some state maintained by the adversary. The final
view of A is the encrypted index I, and the set of gener-
ated tokens t and stA. Now observe the line correspondence
between RealSSE,A and IdealSSE,A,S . In the latter, a sim-
ulator S (maintaining state stS) is enforced with “faking”
BuildIndex and Trpdr for the same D and query keywords,
only using leakage functions L1 and L2 (explained below).
Security boils down to returning (I, t, stA) that is distin-
guishable with negligible probability from the output by the
real game. The challenge lies in properly using leakages L1

and L2 to create I and t, such that (i) they “look” like those
produced by real, and (ii) the Search algorithm in ideal is
consistent, i.e., it functions similarly to that in real.

Although our schemes are independent of the underlying
SSE construction, in order to provide context, we describe
the leakage functions L1,L2 assuming the SSE scheme by
[6]. L1 is associated with what is leaked from the index
alone, whereas L2 accounts for the leakage from the queries.

• L1(D) = maxn
maxn is an upper bound on the size n of D.

• L2(D,W ) = 〈α(W ), σ(W )〉
W is a set of keywords, α(W ) = (id(w))w∈W is the
access patters, i.e., the document ids returned by each
keyword query, and σ(W ) is the search patterns, i.e.,
for every pair wi, wj ∈W such that i 6= j, it indicates
whether wi = wj or wi 6= wj .

In the next section, we explain that with minimal changes
and by introducing extra leakage, we can use the described
SSE security game to formalize the security of our RSSE
framework as well.

3. PROBLEM DEFINITION
We define the problem of Range Searchable Symmetric

Encryption (RSSE) in a very similar manner to SSE. In
fact, the security game of RSSE is identical to that of SSE in
Figure 2, where each wi stands for a range query rather than
a keyword. Moreover, similar to SSE, RSSE captures index-
based schemes in its game; this is different from OPE that
formulates a secure encryption scheme that allows ordered
comparisons, without the need of an index. We employ this
definitional framework to devise solutions that reduce range
query search to multi-keyword search. This further allows
us to build secure solutions on top of an existing secure SSE
construction.

More specifically, we assume that data owner possesses a
dataset D of tuples. We focus on range queries on a sin-
gle attribute with domain A.2. We associate a pair (id, a)
with each tuple d ∈ D, where id is a unique identifier for
d and a is the value of d on A. We also write d.id and d.a
to refer to the elements of this pair. We assume that the
owner encrypts each d ∈ D using a semantically secure en-
cryption scheme, and sends the resulting ciphertext c along
with d.id to the server. The goal is to build a secure index
I on the d.id values, such that the server can perform range
queries that retrieve the set of ids of the tuples satisfying the
query. Note that, for each returned result d.id, the owner
can retrieve from the server the corresponding ciphertext c
of d and decrypt it in a subsequent step, orthogonal to the
search process. In a nutshell, our RSSE framework can be
summarized in the following main points:

• Index creation: Break A into a set of (potentially
overlapping) ranges, and attribute a unique keyword
to every range. Regard each d ∈ D as a document,
and associate it with the keywords of the ranges that
include d.a. We hereafter use terms document and
tuple interchangeably. Utilize a static SSE scheme to
securely index D using as dictionary ∆ the union of
the range keywords of every d ∈ D.

2
We assume that the values of A are positive integers Note that

we can always convert any real domain to a discrete positive one by
proper scaling and translation.



• Query: Break the query range into sub ranges, map
them to keywords and generate tokens for searching
the SSE index.

• Security: Augment the leakage functions L1 and L2

of the underlying SSE scheme, in order to capture the
extra leakage stemming from the keyword mapping
and index structure.

• Updates: Perform updates in batches. For every
batch, create a separate index using new keys. Pe-
riodically, consolidate separate indexes into a single
one (consolidation is performed hierarchically, similar
to log-structured merge trees [25]). This requires the
owner to download the involved indexes, and create a
single (re-encrypted) index. The server must issue ev-
ery range query on each “active” index, and return the
separate result sets.

An RSSE protocol is specified by algorithms Setup, BuildIn-
dex, Trpdr and Search, which are defined identically to those
described in Section 2.2 for static single-keyword SSE, where
w now stands for the query range. Their instantiation in
each of our proposed schemes varies, but builds upon the
constructions of traditional SSE. Our contribution revolves
around the proper assignment of keywords to tuples in BuildIn-
dex, the mapping of a range query to keywords/tokens in
Trpdr, and potentially the adjustment of Search to function
appropriately with the tokens of Trpdr.

Finally, we support updates using only static SSE schemes.
Our goal is forward privacy, i.e., the server should not learn
that a newly added item satisfies a query issued in the past.
Our mechanism is generic capturing all schemes and, thus,
is detailed separately in Section 7.

4. QUADRATIC SCHEME
Our Quadratic scheme is a naive baseline whose sole pur-

pose is to help in conveying the basics of our RSSE frame-
work. Let A be the query attribute domain, and m its total
size. There are O(m2) possible range queries that can be
applied in this domain. We enumerate all these possible sub
ranges of A and assign a unique keyword to each range. Ob-
serve that a domain value belongs to O(m2) sub ranges. We
associate each d ∈ D with the keywords corresponding to
the O(m2) ranges covering d.a ∈ A.

We start by replicating each d ∈ D into d′1, . . . d
′
ν , where

ν is the number of keywords d corresponds to, and include
the replicated tuples in a new dataset D′. We then use any
secure (single-keyword) SSE scheme off-the-shelf (i.e., with-
out any changes), treating each d′ ∈ D′ as a separate tuple.
The Setup and BuildIndex algorithms are identical as in the
SSE scheme, where the tuples in D′ are now augmented
with the keywords described above. Given a range query,
Trpdr simply maps it to the single keyword associated with
its range, and the rest of the algorithm is the same as in the
SSE scheme. Finally, Search is also used as in SSE without
changes, and returns exactly the tuples in D′ containing the
range keyword. By definition, the returned tuples are ex-
actly those satisfying the range query (without replication).

Table 1 in Section 1 shows the costs of Quadratic. Each
tuple is associated with at most O(m2) keywords and, hence,
the index size is O(nm2), where n is the number of tuples in
D. The search time is inherited from the SSE scheme, and

assuming [6] this is O(r), where r is the number of results.
The query size is O(1) as it involves a single keyword/token.

In terms of security, this technique does not introduce
any additional leakage to what SSE reveals for D′, namely
its size. However, this may disclose information about the
distribution of the values of D on A; two datasets with dif-
ferent distributions (e.g., one where all tuples have the same
d.a value, versus one where they all have a different one)
will result in different D′ sizes. This can be easily tack-
led by padding (e.g., as in [9, 5]); for any D′, the mechanism
takes as input the cardinality n of D and the domain size m,
and always constructs a secure index corresponding to the
maximum possible D′ size. Hence, only n,m are leaked in
Quadratic in L1 along with the L2 leakage of the underlying
SSE scheme, which results in the highest security level for
our setting. However, Quadratic clearly suffers from a pro-
hibitive storage cost, which motivates our next solutions.

5. CONSTANT SCHEMES
In this section we present our Constant-BRC and Constant-

URC schemes, which lie on the other side of the spectrum
as far as the storage cost is concerned. Specifically, these
techniques introduce a constant asymptotic overhead on the
index size with respect to the dataset size n. Before embark-
ing on their description, we first explain a naive variant.

We assign to each tuple d ∈ D a single keyword, which
corresponds to its actual value on A, namely d.a. In other
words, the dictionary ∆ is the values in A. No replication
is involved. We then index D with an SSE scheme, yield-
ing an index I of size O(n). A query range of size R is
simply mapped to R keywords, one for each value of A it
covers. We trivially use these keywords as search tokens in
the Trpdr and Search algorithms of the SSE scheme. The
scheme will return the correct r results without false posi-
tives in O(R + r) time. Disregarding security for now, the
main drawback of this scheme is the potentially unaccept-
able query size O(R) for very large ranges. This motivates
our Constant-BRC and Constant-URC solutions, which take
advantage of DPRFs (explained in Section 2.2) to reduce the
query size to O(logR).

The instantiations of the RSSE algorithms for Constant-
BRC and Constant-URC are the following ( the two algo-
rithms differ only in the range covering technique used for
generating the trapdoor – BRC or URC):

k ← Setup(1λ): Output (k1, k2), where k1 is a DPRF key
and k2 is the key of the underlying SSE scheme.

I ← BuildIndex(k,D): Associate each d ∈ D with keyword
d.a. Invoke the BuildIndex algorithm of the SSE scheme
on D and its keywords, but instead of using a PRF
to encrypt the ids, use a DPRF instead. Each d.id is
decrypted only with token fk(d.a), where fk is a DPRF
function.

t← Trpdr(k,w): Invoke the token generation function (T )
of the DPRF employing either BRC or URC, and re-
trieve the corresponding GGM values corresponding to
range w from the GGM tree over A (see Section 2.2).
Randomly permute these GGM values and output them
as vector t. For each GGM value in t, provide the level
of its respective node in the GGM tree as well.



X ← Search(t, I): Derive the (leaf-level) DPRF values from
the GGM values in t. Use these values as tokens in the
Search algorithm of SSE and return the results.

We clarify the algorithm revisiting the example of Fig-
ure 1, where A = {0, . . . , 7}. The owner first generates a
DPRF key k1 in Setup, and computes the DPRF values for
the elements on A that appear in D, creating a GGM tree.
Suppose that a d ∈ D has d.a = 6. In BuildIndex, the owner
assigns 6 as keyword to d. However, contrary to traditional
SSE where this document can be decrypted by using as to-
ken a PRF value on keyword 6, Constant-BRC/URC use
a DPRF value instead. Specifically, they invoke the same
BuildIndex algorithm as SSE (using SSE key k2 generated
in Setup), but the token to decrypt d (or any other tuple d
with d.a = 6) is fk1(6) = G0(G1(G1(k1))). The algorithm
proceeds similarly with every other d ∈ D.

Upon a query, Trpdr outputs as token t the GGM values
corresponding to the nodes covering the range with BRC or
URC. In our example in Figure 1, if BRC is used, then the
output is t = 〈(G1(G0(k1)), 1), (G1(k1), 2)〉, i.e., the GGM
values of nodes N2,3 and N4,7 along with their levels, respec-
tively. If URC is used, then t contains (G0(G1(G0(k1))), 0)
for node N2, (G1(G1(G0(k1))), 0) for N3, (G0(G1(k1)), 1) for
N4,5, and (G1(G1(k1)), 1) for N6,7. Note that the elements
of t are randomly permuted.

In Search, the server first takes the GGM values of the non-
leaf nodes and expands them to compute the DPRF values
for the leaves. For instance, from N2,3’s value G1(G0(k1)), it
generates DPRFs G0(G1(G0(k1))) and G1(G1(G0(k1))). It
can do that because (i) G is public, and (ii) it knows the level
of G1(G0(k1)), i.e., 1. It finally uses as tokens the DPRFs
to retrieve the results, invoking SSE’s Search algorithm.

The cost complexities of Constant-BRC and Constant-
URC are identical and provided in Table 1. Each tuple is
associated with a single keyword and, hence, the storage
cost is O(n). Due to the BRC/URC techniques, the query
size is O(logR) for a range size R. The search time at the
server entails expanding the O(logR) GGM values into R
DPRFs, and retrieving the r results from SSE, yielding a
total O(R + r) time. Both solutions do not introduce false
positives.

We next turn to security. Our Constant constructions can-
not be proven secure against adaptive adversaries that are
allowed to issue intersecting range queries. This is an inher-
ent limitation of our underlying DPRFs, as shown in [24].
Briefly stated, this is because the simulator must have a
priori knowledge of the GGM sub-structure shared by the
intersecting ranges, in order to produce consistent tokens.
However, this is not possible in the adaptive case. In the
example of Figure 1, suppose that some query generated a
token that includes the GGM value for node N2,3. Then,
let another query involve producing as token a GGM value
for node N2. Without the a priori knowledge that the sec-
ond range intersects the first at N2, the simulator could not
have generated the GGM value for N2,3, in a way that it can
produce the GGM value for N2.

Consequently, the Constant schemes limit the functional-
ity by not allowing query intersections. Note that this con-
straint can be enforced at the application level. For instance,
the owner’s program may maintain the history of queries and
abort when an intersecting query is seen, or may try to an-
swer the query from cached answers of previous queries that
collectively encompass the new query range.

To prove security (under the constraint of non-intersecting
queries), we define the two leakages as follows:

• L1(D,A) = 〈m,n〉
D is the dataset, A is the query attribute domain, n is
the cardinality of D, and m is the size of A.

• L2(D,A,W ) =
〈α(W ), σ(W ), ((µ(Ni), `(Ni), idmap(Ni))Ni∈RC(w))w∈W 〉
α(W ), σ(W ) are the access and search patterns of the
queries as defined for SSE. The extra leakage is as fol-
lows. For every query range w ∈ W , the leakage con-
tains a tuple that consists of an alias µ(Ni) for every
nodeNi returned by the range coveringRC(w) – where
the RC function is either BRC or URC – along with
the level `(Ni) of Ni, and the exact mapping idmap(Ni)
of the tuple ids to the leaves of µ(Ni)’s sub tree.

Observe that, contrary to traditional SSE, the two leakage
functions take as input also the query attribute domain A.
This is because our constructions build an index considering
the entire span of A. We further explain the extra leakage in
L2(D,A,W ) incurred by our schemes with an example using
Figure 1. Let the first query be w1 : [0, 3], with results d1, d2,
such that d1.a = 0 and d2.a = 3. Then, L2 over W = {w1} is
an alias for node N0,3, its level (2), and the information that
d1 maps to its left-most leaf, and d2 to its right-most leaf.
Now suppose that the second query is w2 = [5, 7]. Then,
L2 over W = {w1, w2} is what explained above, plus aliases
for nodes N5, N6,7 (without disclosing their relative order)
as well as the mappings of the qualifying tuples in these
sub trees. Note that, neither the relative order of w1, w2 on
A, nor the relative order of the sub trees of each query are
revealed.

We will include the security theorems and proofs of all our
schemes in the long version of our paper.

Qualitative comparison. The Constant schemes feature
considerably better storage than Quadratic (at the expense
of slightly increased query size and search time). However,
they also introduce significantly higher leakage, since they
disclose the exact mapping of the results in a sub tree, which
further reveals relative order information. Comparing the
BRC and URC variants, URC offers slightly better privacy;
the BRC coverage may exclude mapping certain ranges to
the query, whereas URC covers all ranges of the same size
in an indistinguishable manner.

6. LOGARITHMIC SCHEMES
Motivated by the high structural leakage of the Constant

schemes, in this section we design solutions that trade off
storage for privacy. This is achieved by replicating tuples
similar to Quadratic, but with a significantly lower expan-
sion factor. Specifically, we present four constructions that
increase the storage complexity only by a logarithmic fac-
tor, and differ in the other costs, the privacy level, and the
false positives. Section 6.1 describes Logarithmic-BRC and
Logarithmic-URC, Section 6.2 explains Logarithmic-SRC,
and Section 6.3 presents Logarithmic-SRC-i.

6.1 Logarithmic-BRC/URC
The Logarithmic-BRC and Logarithmic-URC schemes mit-

igate the structural leakage of Constant-BRC/URC by avoid-
ing the use of DPRFs and associating each tuple with a



logarithmic, instead of constant, number of keywords. The
RSSE protocol for Logarithmic-BRC and Logarithmic-URC
is as follows (the two schemes again differ in the range cov-
ering technique used in Trpdr):

k ← Setup(1λ): Same as in SSE.

I ← BuildIndex(k,D): Build a binary tree over domain A as
described in Section 2.2, and assign a unique keyword
at each node. For each tuple d ∈ D, find the nodes
on the path from the tree root to d.a, and associate
d with the node keywords. Replicate every d for each
keyword it is associated with, and regard each replica
as separate tuple as discussed in Quadratic. Let D′ be
the resulting dataset including all the replicas. Invoke
the BuildIndex algorithm of the SSE scheme on D′ and
its keywords, after randomly permuting the documents
that are associated with the same keyword.

t← Trpdr(k,w): Let w represent the query range. Find the
nodes that cover w using BRC or URC. Create a token
for each node keyword invoking the Trpdr algorithm of
the SSE scheme and include it in t. Randomly permute
t prior to returning it.

X ← Search(t, I): Invoke the Search algorithm of SSE for
every element in t, and output the union of the results.

The protocol associates each tuple with the dyadic inter-
vals that cover its attribute value. For instance, if d.a = 3
in Figure 1, then d is associated with keywords N0,7, N0,3,
N2,3 and N3 (where each Ni is the label of a node). We
then replicate each d and index the augmented dataset D′

with traditional SSE. Given a range query, we compute its
cover with BRC or URC, and issue the output node labels
of the range covering technique as keywords for traditional
SSE search, i.e., we invoke the conventional Trpdr and Search
algorithms of SSE for every node label and corresponding to-
ken, respectively. For example, for query [2, 7] under BRC,
Trpdr outputs an SSE token for N2,3 and N4,7 in random or-
der, and the Search SSE algorithm is invoked for every such
token separately.

The costs of Logarithmic-BRC and Logarithmic-URC are
summarized in Table 1. The index size is O(n logm), where
n is the number of tuples and m the domain size, since each
tuple is associated with O(logm) keywords. The query size
is O(logR), where R is the size of the query range, since
this is the number of nodes covering the querying range in
BRC and URC. The search time is O(logR + r), where r
the result size, because there are logR tokens issued to the
underlying SSE scheme, each incurring no additional cost
to the retrieval of its results. Finally, the protocol returns
correct answers without false positives, since BRC and URC
cover the query exactly, and a tuple in the result is certainly
associated with the keyword of a node in the cover.

The only extra information leaked is a partitioning of the
result ids into groups. More formally:

• L1(D,A) = 〈m,n〉
D is the dataset, A is the query attribute domain, n is
the cardinality of D, and m is the size of A.

• L2(D,A,W ) =
〈α(W ), σ(W ), ((µ(Ni), id(Ni))Ni∈RC(w))w∈W 〉
α(W ), σ(W ) are the access and search patterns of the

queries as defined for SSE. For every query range w ∈
W , the leakage contains a tuple that consists of an alias
µ(Ni) for every node Ni returned by the range covering
RC(w) – where the RC function is either BRC or URC
– along with the list of tuple ids id(Ni) associated with
keyword Ni.

Qualitative comparison. Logarithmic-BRC/URC feature
increased storage cost compared to Constant-BRC/URC,
but slightly better search time (since the server does not
need to generate DPRFs from the tokens). The main bene-
fit of Logarithmic-BRC/URC is in the substantially reduced
leakage, since they hide both the distribution and the total
order of the tuples in each subtree of the query range cover.
The difference between the BRC and URC variants of Loga-
rithmic is similar to that in Constant; URC does not disclose
information about the position of the range over the domain.
Nevertheless, what is still leaked in both variants is the par-
titioning of the result tuples into distinct groups (each corre-
sponding to a subtree), which may further disclose ordering
information about the groups. This motivates our solution
in the next section.

6.2 Logarithmic-SRC
The extra“result partitioning” leakage of the Logarithmic-

BRC/URC schemes was due to the fact that Trpdr produces
multiple tokens, one for each subtree with which BRC or
URC cover the query range. Logarithmic-SRC, prevents
this leakage by always covering the query range with a sin-
gle range that is potentially a superset of the query range
(SRC stands for single range cover). In addition to enhanced
privacy, this also leads to constant query size, but may in-
troduce false positives.

We can naively realize Logarithmic-SRC building upon
the same binary tree over A as in Logarithmic-BRC/URC
as follows. We assign once again to each d ∈ D the keywords
corresponding to the nodes whose subtrees cover d.a, and
replicate tuples to create an augmented dataset D′. How-
ever, instead of invoking BRC or URC in Trpdr to find the
cover of the query range with tree nodes, we could simply
select the node of the smallest subtree fully covering the
query, and use its keyword for searching. In our example
of Figure 1, we would cover query [2, 7] with the tree root
N0,7. Unfortunately, this solution features an unacceptable
worst-case complexity for the number of leaves (i.e., domain
values) contained in the single subtree, which is O(m) where
m is the domain size, regardless of the query range size R.
This would further lead to an unacceptable number of false
positives. For example, in Figure 1, query [3, 4] is covered
by the tree root that encompasses the entire domain and,
hence, dataset D. Motivated by the above, in Logarithmic-
SRC we produce keywords for the tuples in D based on a
novel tree-like Directed Acyclic Graph, henceforth referred
to as TDAG, which ensures that any query range of size R
is covered by a single subtree with size O(R).

We explain the TDAG structure using Figure 3. We start
by building a binary tree over domain A, similar to the case
of the previous schemes. We then inject one extra node
between every two nodes at every level of the tree (depicted
in gray), and connect it with the two nodes directly below it
in the next level (i.e., the right child of the node in its left,
and the left child of the node in its right).



1 20 3 4 5 6 7

N1N0 N2 N3 N4 N5 N6 N7

N0,1 N2,3 N4,5 N6,7

N0,3 N4,7

N0,7

N1,2 N3,4 N5,6

N2,5

Figure 3: TDAG example

The following lemma is useful for our cost analysis of
Logarithmic-SRC.

Lemma 1. Given a TDAG constructed over a domain A
and any range in A of size R, there is always a subtree of
size O(R) that can completely cover the range.

Proof. For any integer R > 0, there is an integer j ≥ 0
such that 2j ≤ R ≤ 2j+1. Any range of size R can be covered
by at most 2 dyadic ranges (i.e., subtrees in the binary tree
over A) of size 2j+1; either the range is fully contained in
such a subtree, or it is split between two consecutive subtrees
of size 2j+1. These two subtrees are either children of the
same parent in the binary tree, or cousins. Recall that our
TDAG structure essentially links every two cousins in each
level with a new parent. Hence, there is always a node that
covers the two subtrees each of size 2j+1 ≤ 2R. Thus, for
any range of size R, there is always a subtree in TDAG with
size at most 4R ∈ O(R).

Given a range of size R, the SRC range covering algo-
rithm simply finds the lowest common ancestor of the lower
and upper bound of the range, which can be performed in
O(logR) time. In the example of Figure 3, SRC covers range
[2, 7] by N0,7, and range [3, 5] by N2,5.

The RSSE algorithms for Logarithmic-SRC are the same
as in Logarithmic-BRC/URC with the following differences:
(i) in BuildIndex, each d ∈ D is associated with the key-
words/labels of the nodes of TDAG that cover d.a (instead
of the nodes of the binary tree), and (ii) Trpdr generates a
single token for the node label output by the SRC covering
technique (instead of BRC/URC).

Table 1 summarizes the costs of Logarithmic-SRC. The
query size is constant, since the query is represented by a
single token. The index has size O(n logm); for each tuple
d ∈ D, there are O(logm) nodes in the path from the root
to d.a, and each such node is connected to at most one in-
jected node in the TDAG; the subtrees of all these O(logm)
nodes cover d.a and, thus, each d is associated with O(logm)
keywords. The false positives depend on the dataset distri-
bution over A. If the distribution is uniform, then the false
positives are O(R) due to Lemma 1. However, if the dataset
is skewed, then the false positives could be up to O(n). For
example, if [3, 5] is the query in Figure 3 and there is a single
tuple that satisfies the range, but the rest of the dataset has
value 2 on A, then Logarithmic-SRC will return the entire
dataset due to the used keyword N2,5. The search time is
linear in the result size plus the false positives and, thus, it
is O(n) in the worst case where there is heavy skew.

In Logarithmic-SRC, all range queries are reduced to single-
keyword queries and, thus, the scheme degenerates to SSE,
inheriting its security (assuming the padding technique dis-
cussed in Quadratic). However, for technical reasons in our
proofs, we must define an extra subtle leakage, namely the
fact that two different ranges may map to the same keyword.

This can be modeled by extending the definition of search
patterns. Nevertheless, from a practical point of view, this
leakage is not observable by an adversary, since the mapping
takes place at the owner. In particular, the adversary is un-
able to distinguish if the same token was produced twice for
the same or for different range queries.

Qualitative comparison. Contrary to Logarithmic-BRC/
URC, in Logarithmic-SRC the adversary is unable to in-
fer ordering information about the results, since each range
is mapped to a single keyword and the tuples associated
with this keyword are randomly permuted. Logarithmic-
SRC also features optimal query size and the highest achiev-
able privacy in the our RSSE framework that builds upon
single-keyword SSE. Similar to Logarithmic-BRC/URC, this
comes at the cost of extra storage. Logarithmic-SRC is ideal
for datasets with uniform distributions over the query at-
tribute domain. However, it may feature an unacceptable
number of false positives (and, thus, also search time) un-
der heavy data skew. This is mitigated by our final solution
described in the next section.

6.3 Logarithmic-SRC-i
The Logarithmic-SRC-i construction aims at reducing the

false positives of Logarithmic-SRC from O(n) to O(R + r),
where R is the query range size and r is the result size. It
achieves this by building a double index I = (I1, I2), where
I2 indexes the tuples in D similar to the previous schemes,
and I1 is an auxiliary index that guides the search to I2.
This construction is interactive (hence the “i” in the name),
i.e., it involves an extra round of communication between
the owner and the server during the query; the owner first
queries I1, it receives the result from the server, and based
on the result it queries I2.

We illustrate the construction of I1 and I2 with the exam-
ple of Figure 4. Suppose that D = {d0, . . . , d15}. Assume
also for simplicity that d0, . . . , d15 are sorted on A, so that
the subscript i of each di implies its position in the total or-
der of the tuples on A. Also consider that d0.a = . . . d9.a =
2, d10.a = 4, d11.a = d12.a = 5, d13.a = d14.a = 6, and
d15.a = 7. Consider TDAG1 in the upper part of the figure,
which is built on domain A = {0, . . . , 7}, and let [3, 5] be
the query range. Recall that Logarithmic-SRC answers this
query with TDAG1 by using keyword N2,5. This returns as
false positives d0, . . . , d9 corresponding to domain value 2,
which comprise more than half of D.
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Figure 4: Building the index in Logarithmic-SRC-i



Instead of using TDAG1 to index the tuples, Logarithmic-
SRC-i uses it to index the ranges of tuples corresponding to
the domain values, where a tuple range accounts for a range
of tuple subscripts. Specifically, each leaf is associated with
a pair (domain value, tuple range), e.g., N2 is associated
with (2, [0, 9]), since d0, . . . , d9 all have domain value 2. The
non-leaf nodes are associated with the lists of (domain value,
tuple range) pairs of the leaves in their subtree, e.g., N2,5

corresponds to 〈(2, [0, 9]), (4, [10, 10]), (5, [11, 12])〉. I1 is
constructed using the traditional SSE BuildIndex algorithm,
where the documents are the pairs or lists of pairs described
above, and the keywords are the TDAG1 node labels.

The construction then builds a second TDAG, denoted
by TDAG2 in the lower part of the figure, which is built on
the tuples sorted on A. Note that the order of the docu-
ments corresponding to the same keyword (i.e., to the same
node in TDAG1) does not affect the structure of TDAG2.
For instance, TDAG2 would be equivalent if we swapped
d11 with d12 in the leaf level (where d11 and d12 have the
same keyword). Prior to constructing TDAG2, we randomly
shuffle the documents corresponding to the same keyword.
Each node corresponds to the tuples covered by its subtree,
e.g., N10,13 is associated with d10, d11, d12 and d13. I2 is
constructed using the traditional SSE BuildIndex algorithm,
where the documents are d0, . . . , d15, and the keywords are
the TDAG2 node labels.

The scheme performs the query in two stages. In the
first, it issues the query range to I1. For instance, for [3, 5]
it creates a token for N2,5 (following always the SRC range
covering technique on the TDAG), and receives 〈(2, [0, 9]),
(4, [10, 10]), (5, [11, 12])〉. It then selects the pairs that sat-
isfy the query, and creates a new, single query range on the
document subscripts, by merging the qualifying ranges. In
our example, it merges [10, 10] and [11, 12] to create new
query [10, 12] ([0,9] does not satisfy the original query). In
the second stage, it issues [10, 12] to I2, creating the to-
ken for node N10,13 in TDAG2, which fully covers the tuple
range. The algorithm returns as result d10, d11, d12 and d13.
Observe that now there is only a single false positive, d13,
whereas Logarithmic-SRC returned 10 false positives for the
same query. The RSSE protocol for Logarithmic-SRC-i is as
follows:

k ← Setup(1λ): Generate and output two SSE keys (k1, k2).

I ← BuildIndex(k,D): Build SSE index I1 on the tuple ranges
using TDAG1 with key k1, and index I2 on the sorted
tuples on A using TDAG2 with key k2. Output (I1, I2).

t← Trpdr(k,w): This is an interactive algorithm. Parse k =
(k1, k2). Generate SSE token t1 with k1 for the SRC
node on TDAG1 that covers range w, and send it to
the server. Decrypt the answer to retrieve new range
w′. Generate SSE token t2 with k2 for the SRC node
on TDAG2 that covers w′, and output (t1, t2).

X ← Search(t, I): This is an interactive algorithm. Parse
t = (t1, t2) and I = (I1, I2). Retrieve t1 from the
owner, invoke the Search algorithm of SSE on I1 and
send the result to the owner. Retrieve t2 from the
owner, invoke the Search algorithm of SSE on I2 and
output the result X.

Table 1 illustrates the costs of Logarithmic-SRC-i. The
number of documents indexed by I1 is equal to the number

of distinct domain values contained in the dataset, since
we index the entire range of tuples on a specific domain
value by a single (domain value, tuple range) document of
constant size. Therefore, since I1 is constructed using a
TDAG similar to Logarithmic-SRC, its size is O(n logm).
The number of documents indexed by I2 is O(n), i.e., the
entire D. Contrary to I1, the TDAG is built on n leaves
and, thus, the size of I2 is O(n logn). Assuming that m
is typically larger than n, the total storage cost becomes
O(n logm). The query size is O(1), since there are only two
tokens involved. The false positives areO(R+r), considering
also those of I1. This is because the range size in I1 is of size
O(R), whereas in I2 is of size O(r); due to Lemma 1, the
number of false positives in each index is linear in the query
range size and, thus, the total false positives are O(R + r).
The search time is dictated by the number of results plus
the false positives and, thus, it is also O(R+ r).

Since I1 and I2 are built following the construction algo-
rithm of the underlying SSE protocol and using two different
keys, the leakage in each index is identical to that of the SSE
scheme. Therefore, having the L1 and L2 leakages of SSE
for both indexes, we can prove the security of Logarithmic-
SRC-i.

Qualitative comparison. Logarithmic-SRC-i reduces the
false positives as compared to Logarithmic-SRC, even in the
case of heavy data skew, while retaining the optimal query
size and linearithmic storage cost. As a downside, the usage
of the auxiliary index leaks slightly more information than
its counterpart. For instance, the size of I1 (derived from
L1 of I1) leaks the number of distinct domain values covered
by the dataset, whereas the size of a result from a query to
I1 (derived from L2 of I1) reveals the number of distinct
domain values covered by the result. Moreover, in non-
skewed datasets, Logarithmic-SRC-i inflicts higher search
cost than Logarithmic-SRC. This is because the benefits of
using the extra I1 index in Logarithmic-SRC-i to reduce the
false positives diminish and, thus, the extra search overhead
compared to Logarithmic-SRC becomes evident. In that
sense, Logarithmic-SRC-i is better under data skew, whereas
Logarithmic-SRC is preferable in non-skewed datasets.

7. UPDATES
Recall from Section 2.1 that most dynamic SSE (DSSE)

schemes [22, 21, 34, 5] create a dynamic index that intro-
duces the least possible leakage and provides forward pri-
vacy, i.e., it does not reveal that a new update satisfies a pre-
vious query. We follow an alternative methodology adopting
a bulk-loading technique from commercial databases (e.g.,
Vertica [25]), which is simple from a Security point of view,
but (i) builds upon static SSE schemes that are faster and
easier to implement than their dynamic counterparts, (ii) en-
ables easy formulation of leakage, and (iii) captures forward
privacy. It is also generic; it applies to all our solutions and
to any future static RSSE scheme.

We assume that updates come in batches, and each batch
i is treated as a separate dataset Di. The updates can be
insertions of new tuples, or modifications/deletions of old
tuples. Every update is treated as an insertion in the new
dataset; deletions carry a small flag indicating that the tu-
ple must be removed. For each new dataset Di, the owner
creates a new index Ii with a fresh key ki following the
BuildIndex of the utilized construction, and sends the en-



crypted data to the server. Suppose that the owner has
uploaded b such indexes. Upon a query, the owner creates b
separate tokens, one for each index with the corresponding
key. The server processes them separately on the b indexes,
and returns the results. The final refinement of the results
occurs at the owner, who filters out the deleted tuples and
appropriately performs the potential modifications.

Clearly, the number of keys, query size, storage cost, search
time and result size increase linearly with b and, thus, the
number of indexes should not increase indefinitely. There-
fore, we adopt the approach of Vertica, which essentially
organizes the datasets/batches into a log-structured merge
tree. Specifically, the owner sets a parameter called consoli-
dation step, denoted by s, which determines how frequently
the indexes must be merged. After creating s new indexes,
the owner downloads them, merges their tuples into a sin-
gle index, re-encrypts the index and sends it to the server.
This happens hierarchically ; after consolidating s indexes s
times, the s merged indexes are further consolidated into a
new one. Conceptually, this is like organizing the indexes
as leaves of a full s-ary tree created bottom-up, such that
when s nodes are created in a level, they get consolidated
creating a parent node at the next higher level. This leads
to an amortized logarithmic merge cost in the number of
batches [25]. Although this incurs extra periodic cost at
the owner for the consolidation and re-encryption, it retains
O(s logs b) indexes at the server (and keys at the owner) at
all times, instead of b. Finally, note that s should be tuned
based on the application at hand. For instance, if the ap-
plication expects frequent deletions, it is beneficial to set s
to a small value, in order to perform merge operations more
frequently, thus eliminating the extra cost for storing the
deletions as insertions.

The leakage of this methodology is essentially the entire
history of the L1,L2 leakages of every index that was once
“active” at the server. For instance, from this leakage one
could derive the number of deletions that occurred in one
of the batches. Also observe that our technique satisfies
forward privacy; every index is encrypted with a fresh key
and, thus, a token created for one index in the past cannot be
used to decrypt index components produced in the future.

8. EXPERIMENTAL EVALUATION
In this section we experimentally evaluate the performance

of all our proposed schemes, excluding Quadratic that fea-
tures a prohibitive storage cost. Based on our discussion
in Section 2.1 about the three schemes of [26], we also in-
clude a comparison to the basic scheme of Li et al. [26],
hereafter referred to as PB, recalling though that the latter
offers unrealistically weaker security than our schemes. We
also include additional experiments in the Appendix.

Setup. We implemented our solutions in Java, and con-
ducted our experiments on a 64-bit machine with an Intel R©

CoreTM i7-2720QM CPU at 2.2GHz and 16GB RAM, run-
ning Linux Ubuntu 14.10. We utilized the JavaX.crypto li-
brary for the entailed cryptographic operations. Specifically,
we implemented PRF and GGM evaluations with HMAC-
SHA-512, and hash computations with SHA-1. We also used
AES128-CBC for encryption. We chose the construction
by Cash et al. [6] as our underlying SSE scheme, setting
its parameters to the values recommended in [6] for space-
efficiency (S = 6000, K = 1.1).
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Figure 5: Index costs (Gowalla)

We experimented with two real datasets. The first is from
the Gowalla geo-social network (snap.stanford.edu/data/loc-
gowalla.html), hereafter called Gowalla. This dataset con-
sists of 6,442,890 user location check-ins in a period be-
tween February 2009 and October 2010. We used as query
attribute the date/time of the check-ins converted to 32-
bit integers and translated such that the domain is A =
{0, . . . , 103017913}. The second dataset is from the US
Postal Service (www.app.com), called USPS, and contains 389,032
employee records. We used as query attribute the annual
salary field with domain A = {0, . . . , 276840}. Note that
Gowalla is relatively uniform on A (95% distinct values on
A), whereas USPS is heavily skewed (5% distinct values on
A). All datasets and respective indexes fit in memory.

Index costs. In the first set of our experiments we as-
sess the index size and construction time in Gowalla when
varying the dataset size n, and demonstrate the results in
Figures 5(a) and 5(b), respectively. The construction time
involves also the I/O cost for reading the dataset from the
disk into main memory. As in [26], to retrieve the various
datasets, we simply partition the initial dataset (sorted on
A) into 10 sets of 500K tuples each, chosen uniformly at
random from the entire data set, start with one partition,
and gradually add the rest of the partitions. Note that the
BRC and URC variants of the same scheme feature identical
costs. The index size entails only the replicated tuple ids and
their associated keywords. The curves in both figures have
the same trends, since the index size dictates the construc-
tion time. Moreover, both the index size and construction
time scale linearly with n, since even the logarithmic factors
essentially add a constant factor to the overall size.

As expected, the Constant schemes achieve the smallest
index size (12.63-131 MB), as well as the lowest construction
time (288-332 s). The costs in Logarithmic-BRC/URC in-
crease faster due to the logarithmic factor in the index size.
Logarithmic-SRC incurs about twice the size and time com-
pared to Logarithmic-BRC/URC, due to the nodes injected
to form the TDAG. Logarithmic-SRC-i requires double the
size and time compared to Logarithmic-SRC. Recall that
Logarithmic-SRC-i entails building a second index on top
of the one in Logarithmic-SRC, whose size depends on the
distinct values on A covered by the dataset. In Gowalla, the
tuples cover 95% of the query domain. Therefore, the size of
the extra index is almost as large as the basic one, doubling
the overall size. Finally, observe that Constant-BRC/URC
and Logarithmic-BRC/URC outperform PB [26] in terms of
index size, whereas the construction cost of all our schemes
is significantly lower than PB.
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Table 2 includes the index size and construction time
for the USPS dataset. In this experiment we do not vary
the dataset size because it is small. Similar to the case of
Gowalla, the Constant schemes feature the smallest over-
heads, Logarithmic-BRC/URC add a constant factor to the
costs of Constant, and Logarithmic-SRC incurs almost twice
as high costs as Logarithmic-BRC/URC. However, the most
interesting observation here is that, contrary to the case
of Gowalla, Logarithmic-SRC-i adds minimal overheads to
those of Logarithmic-SRC. This is because in USPS there are
only 5% distinct values on A, which makes the extra index
in Logarithmic-SRC-i very compact. Once again, Constant-
BRC/URC and Logarithmic-BRC/URC feature a smaller
index size than PB, whereas all our schemes have orders of
magnitude faster construction time than PB.

Scheme Index size (MB) Constr. time (s)

Constant-BRC/URC 10.30 2.853
Logarithmic-BRC/URC 195.7 54.967
Logarithmic-SRC 391.4 106.970
Logarithmic-SRC-i 419.14 119.662
PB (Li et al. [26]) 299.06 2374

Table 2: Index costs (USPS)

False positives. Figures 6(a) and 6(b) plot the average
false positive rate (i.e., the average ratio of false positives
over the total result size) as a function of the query range
size, computed over the results of 200K random queries on
each domain. We evaluate only Logarithmic-SRC-i versus
Logarithmic-SRC, since these are the only schemes intro-
ducing false positives. The rate decreases almost linearly
with the range size, since more tuples previously marked as
false positives are contained in the range. In both datasets,
Logarithmic-SRC-i incurs fewer false positives, outperform-
ing Logarithmic-SRC by up to 27% in Gowalla and 38% in
USPS. In USPS the rate drops more steeply in Logarithmic-
SRC-i and the performance margin becomes wider, since
USPS is more skewed than Gowalla, offering stronger op-
portunities to the auxiliary I1 index in Logarithmic-SRC-i
to eliminate false positives. Overall, the false positives in
Logarithmic-SRC-i do not exceed 40% of the entire answer.
Note that PB introduces a very small number of false posi-
tives for all range sizes. However, our Constant-BRC/URC
and Logarithmic-BRC/URC schemes, whose performance
has dominated that of PB in the investigated metrics so
far, introduce no false positives at all.

Search cost. We evaluate the wall-clock time to execute
Search at the server, as a function of the query range size.
In Figures 7(a) and 7(b) We report the average CPU cost in
Gowalla and USPS, respectively, for the same 200K queries
of Figure 6. We compare all schemes, and provide also the
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inevitable cost of retrieving the actual results with the un-
derlying SSE scheme of [6]. The search time is dominated by
the PRF/DPRF evaluations entailed in [6] for each retrieved
tuple. Consequently, Logarithmic-BRC (resp. Constant-
BRC) and Logarithmic-URC (resp. Constant-URC) have
negligible performance difference and we, thus, group them
into a single curve.

Logarithmic-BRC/URC are the fastest and their perfor-
mance coincides with that of pure SSE. This is expected
since their search complexity is O(logR+ r) and logR adds
negligible overhead. The Constant schemes are slightly more
expensive, due to the extra expansion of the GGM tokens
into O(R) DPRFs. Observe that this additional cost is more
pronounced in Gowalla, due to its significantly larger do-
main (and, thus, query range sizes) than USPS. The SRC-
based schemes are more costly, due to the false positives they
introduce. In Gowalla, Logarithmic-SRC-i is more expen-
sive than Logarithmic-SRC, due to the extra searches in its
auxiliary index. Nevertheless, in USPS, Logarithmic-SRC-
i outperforms Logarithmic-SRC, since its savings in false
positives outweigh the extra index cost. PB features com-
parable search cost with that of Constant-BRC/ URC and
Logarithmic-BRC/URC in the Gowalla dataset, but higher
search cost in the case of USPS. In overall, the Constant-
BRC/URC and Logarithmic-BRC/URC schemes subsume
PB also in terms of performance.

9. CONCLUSION
In this paper we revisited the problem of range search

over data outsourced to an untrusted server. Prior tech-
niques are either secure but exhibit prohibitive performance
cost, or efficient but with unacceptable privacy leakages. We
presented the first concrete framework for practical private
range search building upon the definitional framework of
Searchable Symmetric Encryption (SSE). We introduced a
variety of schemes with realistic security/efficiency trade-
offs. Our constructions utilize any secure (existing or fu-
ture) SSE scheme as a black box, and appropriately con-
vert range search to multi-keyword search. We formally
defined the security of all proposed algorithms formulating
the leakages, and experimentally demonstrated their prac-
ticality. In our future work, we plan to focus on the con-
siderably harder setting of multi-dimensional (i.e., multi-
attribute) range queries.
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APPENDIX
A. ADDITIONAL EXPERIMENTS
Query costs at owner. To verify the practicality of the
proposed approaches, we also evaluated experimentally the
costs incurred at the owner during query execution. In par-
ticular, we generated random queries for ranges of size 1 to
100 over the domain A = {0, . . . , 220}, and measured the
size of each query (in bytes) and the time required for gen-
erating it. Figures 8(a) and 8(b) present the average results
over 1000 executions for each query range size. For clarity,
the curves corresponding to Constant and Logarithmic for
the same range covering technique (i.e., BRC or URC) are
grouped together in both figures, since (i) the same range
covering technique leads to the same query size in both Con-
stant and Logarithmic, and (ii) the difference in query gen-
eration time between Constant and Logarithmic is negligi-
ble, as token generation times of Constant are only slightly
higher than those of Logarithmic (due to the GGM value
expansion starting from the root).

As expected, Logarithmic-SRC and Logarithmic-SRC-i fea-
ture the smallest query sizes: the former always entails a sin-
gle token per query, and the latter two tokens, where each
token takes 24 bytes. On the other hand, the query size in
both BRC- and URC-based schemes scales logarithmically
with the range size. The saw-like trend of URC is due to
the worst-case decomposition, whose size oscillates with the
range size regardless of the randomly-selected query posi-
tion. In contrast, in BRC, different query positions for the
same range size lead to different numbers of tokens, which
are smoothed by the averaging.
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(b) Query generation time

Figure 8: Query costs at owner

Figure 8(b) depicts the wall-clock time required in Trpdr
to compute the tokens for all nodes that are produced by
the range covering technique. We see that the curves follow
a similar trend to those of Figure 8(a), which is expected
since the total time is dominated by the PRF evaluations
(one for each covering node/keyword). Observe that these
operations are lightweight, and are typically carried out in
less than 0.01 milliseconds in all our schemes. PB, on the
other hand, incurs larger query sizes and higher query gen-
eration times than all our schemes, mainly due to the exces-
sive number of cryptographic hash functions involved in its
Bloom filter approach.

It is important to note that the reported costs of our meth-
ods do not depend on the datasets, or on the domain; they
only depend on the position of the range in the binary tree
over the domain. As such, the presented results are repre-
sentative of all possible domains and datasets.


